Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(6): 063504, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778003

RESUMO

The role of turbulence in setting boundary plasma conditions is presently a key uncertainty in projecting to fusion energy reactors. To robustly diagnose edge turbulence, we develop and demonstrate a technique to translate brightness measurements of HeI line radiation into local plasma fluctuations via a novel integrated deep learning framework that combines neutral transport physics and collisional radiative theory for the 33D - 23P transition in atomic helium with unbounded correlation constraints between the electron density and temperature. The tenets for experimental validity are reviewed, illustrating that this turbulence analysis for ionized gases is transferable to both magnetized and unmagnetized environments with arbitrary geometries. Based on fast camera data on the Alcator C-Mod tokamak, we present the first two-dimensional time-dependent experimental measurements of the turbulent electron density, electron temperature, and neutral density, revealing shadowing effects in a fusion plasma using a single spectral line.

2.
Rev Sci Instrum ; 92(10): 103502, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717421

RESUMO

For the first time, a digital Mirror Langmuir Probe (MLP) has successfully sampled plasma temperature, ion saturation current, and floating potential together on a single probe tip in real time in a radio-frequency driven helicon linear plasma device. This is accomplished by feedback control of the bias sweep to ensure a good fit to I-V characteristics with a high frequency, high power digital amplifier, and field-programmable gate array controller. Measurements taken by the MLP were validated by a low speed I-V characteristic manually collected during static plasma conditions. Plasma fluctuations, induced by varying the axial magnetic field (f̃ = 10 Hz), were also successfully monitored with the MLP. Further refinement of the digital MLP pushes it toward a turn-key system that minimizes the time to deployment and lessens the learning curve, positioning the digital MLP as a capable diagnostic for the study of low radio-frequency plasma physics. These demonstrations bolster confidence in fielding such digital MLP diagnostics in magnetic confinement experiments with high spatial and adequate temporal resolution, such as edge plasma, scrape-off layer, and divertor probes.

3.
Rev Sci Instrum ; 90(8): 083504, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472602

RESUMO

High bandwidth, high spatial resolution measurements of electron temperature, density, and plasma potential are valuable for resolving turbulence in the boundary plasma of tokamaks. While conventional Langmuir probes can provide such measurements, either their temporal or spatial resolution is limited: the former by the sweep rate necessary for obtaining I-V characteristics and the latter by the need to use multiple electrodes, as is the case in triple and double probe configurations. The Mirror Langmuir Probe (MLP) bias technique overcomes these limitations by rapidly switching the voltage on a single electrode cycling between three bias states, each dynamically optimized for the local plasma conditions. The MLP system on Alcator C-Mod used analog circuitry to perform this function, measuring Te, VF, and Isat at 1.1 MSPS. Recently, a new prototype digital MLP controller has been implemented on a Red Pitaya Field Programmable Gate Array (FPGA) board which reproduces the functionality of the original controller and performs all data acquisition. There is also the potential to provide the plasma parameters externally for use with feedback control systems. The use of FPGA technology means the system is readily customizable at a fraction of the development time and implementation cost. A second Red Pitaya was used to test the MLP by simulating the current response of a physical probe using C-Mod experimental measurements. This project is available as a git repository to facilitate extensibility (e.g., real-time control outputs and more voltage states) and scalability through collaboration.

4.
Rev Sci Instrum ; 90(1): 013505, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709222

RESUMO

Understanding the statistics of fluctuation driven flows in the boundary layer of magnetically confined plasmas is desired to accurately model the lifetime of the vacuum vessel components. Mirror Langmuir probes (MLPs) are a novel diagnostic that uniquely allow us to sample the plasma parameters on a time scale shorter than the characteristic time scale of their fluctuations. Sudden large-amplitude fluctuations in the plasma degrade the precision and accuracy of the plasma parameters reported by MLPs for cases in which the probe bias range is of insufficient amplitude. While some data samples can readily be classified as valid and invalid, we find that such a classification may be ambiguous for up to 40% of data sampled for the plasma parameters and bias voltages considered in this study. In this contribution, we employ an autoencoder (AE) to learn a low-dimensional representation of valid data samples. By definition, the coordinates in this space are the features that mostly characterize valid data. Ambiguous data samples are classified in this space using standard classifiers for vectorial data. In this way, we avoid defining complicated threshold rules to identify outliers, which require strong assumptions and introduce biases in the analysis. By removing the outliers that are identified in the latent low-dimensional space of the AE, we find that the average conductive and convective radial heat fluxes are between approximately 5% and 15% lower as when removing outliers identified by threshold values. For contributions to the radial heat flux due to triple correlations, the difference is up to 40%.

5.
Phys Rev Lett ; 121(5): 055001, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118250

RESUMO

Efficient lower hybrid current drive (LHCD) is demonstrated at densities up to n[over ¯]_{e}≈1.5×10^{20} m^{-3} in diverted plasmas on the Alcator C-Mod tokamak by operating at increased plasma current-and therefore reduced Greenwald density fraction. This density exceeds the nominal "LH density limit" at n[over ¯]_{e}≈1.0×10^{20} m^{-3} reported previously, above which an anomalous loss of current drive efficiency was observed. The recovery of current drive efficiency to a level consistent with engineering scalings is correlated with a reduction in density shoulders and turbulence levels in the far scrape-off layer. Concurrently, rf wave interaction with the edge and/or scrape-off-layer plasma is reduced, as indicated by a minimal broadening of the wave frequency spectrum measured at the plasma edge. These results have important implications for sustaining steady-state tokamak operation and indicate a pathway forward for implementing efficient LHCD in a reactor.

6.
Rev Sci Instrum ; 89(4): 043512, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716369

RESUMO

An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ∼1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.

7.
Rev Sci Instrum ; 88(7): 073501, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764551

RESUMO

A new servomotor drive system has been developed for the horizontal reciprocating probe on the Alcator C-Mod tokamak. Real-time measurements of plasma temperature and density-through use of a mirror Langmuir probe bias system-combined with a commercial linear servomotor and controller enable self-adaptive position control. Probe surface temperature and its rate of change are computed in real time and used to control probe insertion depth. It is found that a universal trigger threshold can be defined in terms of these two parameters; if the probe is triggered to retract when crossing the trigger threshold, it will reach the same ultimate surface temperature, independent of velocity, acceleration, or scrape-off layer heat flux scale length. In addition to controlling the probe motion, the controller is used to monitor and control all aspects of the integrated probe drive system.

8.
Rev Sci Instrum ; 87(2): 023504, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931846

RESUMO

Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

9.
Phys Rev Lett ; 112(11): 115001, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702380

RESUMO

With fusion device performance hinging on the edge pedestal pressure, it is imperative to experimentally understand the physical mechanism dictating the pedestal characteristics and to validate and improve pedestal predictive models. This Letter reports direct evidence of density and magnetic fluctuations showing the stiff onset of an edge instability leading to the saturation of the pedestal on the Alcator C-Mod tokamak. Edge stability analyses indicate that the pedestal is unstable to both ballooning mode and kinetic ballooning mode in agreement with observations.

10.
Rev Sci Instrum ; 84(5): 053507, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742551

RESUMO

A new Ion Sensitive Probe head has been created for the outer-midplane scanning probe system on the Alcator C-Mod tokamak. The new probe head contains three elements: an ion sensitive probe to measure ion temperature and plasma potential, a Langmuir probe to measure electron temperature, density, and floating potential, and a second Langmuir probe to measure ion saturation current and the density fluctuations arising from ''blob'' events. The ion sensitive probe current is normalized to this measurement to reduced deleterious effects of the strong fluctuations. Design of the high heat flux probe (>100 MW/m(2)) and initial results are presented.

11.
Rev Sci Instrum ; 84(3): 033502, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23556816

RESUMO

A new Retarding Field Analyzer (RFA) head has been created for the outer-midplane scanning probe system on the Alcator C-Mod tokamak. The new probe head contains back-to-back retarding field analyzers aligned with the local magnetic field. One faces "upstream" into the field-aligned plasma flow and the other faces "downstream" away from the flow. The RFA was created primarily to benchmark ion temperature measurements of an ion sensitive probe; it may also be used to interrogate electrons. However, its construction is robust enough to be used to measure ion and electron temperatures up to the last-closed flux surface in C-Mod. A RFA probe of identical design has been attached to the side of a limiter to explore direct changes to the boundary plasma due to lower hybrid heating and current drive. Design of the high heat flux (>100 MW∕m(2)) handling probe and initial results are presented.

12.
Rev Sci Instrum ; 83(10): 10E309, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126969

RESUMO

A swept-frequency X-mode reflectometer has been built on Alcator C-Mod to measure the scrape-off layer (SOL) density profiles adjacent to the lower hybrid launcher. The reflectometer system operates between 100 and 146 GHz at sweep rates from 10 µs to 1 ms and covers a density range of ∼10(16)-10(20) m(-3) at B(0) = 5-5.4 T. This paper discusses the analysis of reflectometer density profiles and presents first experimental results of SOL density profile modifications due to the application of lower hybrid range-of-frequencies power to L-mode discharges. Comparison between density profiles measured by the X-mode reflectometer and scanning Langmuir probes is also shown.

13.
Rev Sci Instrum ; 83(3): 033501, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22462916

RESUMO

A novel set of thermocouple sensors has been developed to measure heat fluxes arriving at divertor surfaces in the Alcator C-Mod tokamak, a magnetic confinement fusion experiment. These sensors operate in direct contact with the divertor plasma, which deposits heat fluxes in excess of ~10 MW/m(2) over an ~1 s pulse. Thermoelectric EMF signals are produced across a non-standard bimetallic junction: a 50 µm thick 74% tungsten-26% rhenium ribbon embedded in a 6.35 mm diameter molybdenum cylinder. The unique coaxial geometry of the sensor combined with its single-point electrical ground contact minimizes interference from the plasma/magnetic environment. Incident heat fluxes are inferred from surface temperature evolution via a 1D thermal heat transport model. For an incident heat flux of 10 MW/m(2), surface temperatures rise ~1000 °C/s, corresponding to a heat flux flowing along the local magnetic field of ~200 MW/m(2). Separate calorimeter sensors are used to independently confirm the derived heat fluxes by comparing total energies deposited during a plasma pulse. Langmuir probes in close proximity to the surface thermocouples are used to test plasma-sheath heat transmission theory and to identify potential sources of discrepancies among physical models.

14.
Rev Sci Instrum ; 81(10): 10E111, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033976

RESUMO

An ion sensitive probe (ISP) is developed as a robust diagnostic for measuring plasma potentials (Φ(P)) in magnetized plasmas. The ISP relies on the large difference between the ion and electron gyroradii (ρ(i)/ρ(e)∼60) to reduce the electron collection at a collector recessed behind a separately biased wall distance ∼ρ(i). We develop a new ISP method to measure the plasma potential that is independent of the precise position and shape of the collector. Φ(P) is found as the wall potential when charged current to the probe collector vanishes during the voltage sweep. The plasma potentials obtained from the ISP match Φ(P) measured with an emissive probe over a wide range of plasma conditions in a small magnetized plasma.

15.
Rev Sci Instrum ; 81(10): 10E513, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034041

RESUMO

Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

16.
Rev Sci Instrum ; 78(7): 073501, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17672759

RESUMO

A new method for the real-time evaluation of the conditions in a magnetized plasma is described. The technique employs an electronic "mirror Langmuir probe" (MLP), constructed from bipolar rf transistors and associated high-bandwidth electronics. Utilizing a three-state bias wave form and active feedback control, the mirror probe's I-V characteristic is continuously adjusted to be a scaled replica of the "actual" Langmuir electrode immersed in a plasma. Real-time high-bandwidth measurements of the plasma's electron temperature, ion saturation current, and floating potential can thereby be obtained using only a single electrode. Initial tests of a prototype MLP system are reported, proving the concept. Fast-switching metal-oxide-semiconductor field-effect transistors produce the required three-state voltage bias wave form, completing a full cycle in under 1 mus. Real-time outputs of electron temperature, ion saturation current, and floating potential are demonstrated, which accurately track an independent computation of these values from digitally stored I-V characteristics. The MLP technique represents a significant improvement over existing real-time methods, eliminating the need for multiple electrodes and sampling all three plasma parameters at a single spatial location.


Assuntos
Eletroquímica/instrumentação , Eletrodos , Eletrônica/instrumentação , Gases/química , Magnetismo/instrumentação , Transdutores , Sistemas Computacionais , Eletroquímica/métodos , Eletrônica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura Alta , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA