Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4140, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468493

RESUMO

Kidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.


Assuntos
Cálculos Renais , Medula Renal , Humanos , Medula Renal/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 7 da Matriz , Oxalato de Cálcio/metabolismo , Transcriptoma , Cálculos Renais/genética , Cálculos Renais/metabolismo
3.
Clin J Am Soc Nephrol ; 18(8): 1059-1067, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37256909

RESUMO

BACKGROUND: Uromodulin is a protein made only by the kidney and released in urine, circulating in polymerizing and nonpolymerizing forms. This protein's multiple functions include inhibition of stone formation in the urine. The physiological determinants of uromodulin production are incompletely understood. METHODS: We investigated changes in uromodulin levels and key factors governing its production and release in urine and serum. We performed an experiment to determine whether water loading, a common intervention to prevent stone formation, will alter the rate of uromodulin production. During a 2-day period, 17 stone forming participants and 14 control participants were subjected to water loading (day 1) and normal fluid intake (day 2). Uromodulin levels were measured on timed hourly collections in urine and plasma during the period of the study. RESULTS: Water loading increased urinary uromodulin secretion (33±4 versus 10±4 µ g/min at baseline, P < 0.0001) in stone formers and control participants. Despite high urine volumes, most participants maintained relatively stable urinary uromodulin concentrations. Native Western blots for polymerizing and nonpolymerizing uromodulin suggest that polymerizing uromodulin was the predominant form at higher urinary flow volumes. Urine flow rates and sodium excretion were significant correlates of urinary uromodulin production. Water loading did not affect serum uromodulin levels, which were also not associated with urinary uromodulin. CONCLUSIONS: Water loading increases the secretion of polymerizing urinary uromodulin. This increased secretion reduces the variability of urinary uromodulin concentrations despite high urine volumes. Serum uromodulin levels were not affected by this treatment.


Assuntos
Cálcio , Cálculos Renais , Humanos , Uromodulina , Cálcio/urina , Cálculos Renais/urina , Água , Rim/metabolismo
4.
Curr Opin Nephrol Hypertens ; 32(3): 271-277, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912260

RESUMO

PURPOSE OF REVIEW: Uromodulin, a protein that is highly conserved across several species through evolution, functions to maintain homeostasis and prevent disease development and progression. Historically, the role of uromodulin has been thought to be limited to the kidney and genitourinary tract. This review highlights developments indicating a broader role of uromodulin in human health. RECENT FINDINGS: Although initially discovered in the urine and found to have immunomodulatory properties, recent findings indicate that serum uromodulin (sUMOD) is distinct from urine uromodulin (uUMOD) in its structure, function, and regulation. uUMOD binds pathogenic bacteria in the urine preventing infection and is also upregulated in kidneys undergoing repair after injury. Uromodulin knockout mice exhibit higher mortality in the setting of sepsis which is also associated with upregulation of sUMOD. sUMOD lowers calcification risk but this may be influenced by presence of kidney disease. SUMMARY: Uromodulin is an evolutionarily conserved protein produced exclusively in the kidney tubule cells with evolving roles being reported both in the kidney and systemically. Further research should be focused at harnessing its use as a potential therapeutic.


Assuntos
Insuficiência Renal Crônica , Animais , Camundongos , Humanos , Uromodulina , Taxa de Filtração Glomerular/fisiologia , Biomarcadores , Rim
5.
Semin Nephrol ; 42(3): 151277, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36411194

RESUMO

Tamm-Horsfall protein (THP) is produced exclusively by the kidney, where it is released into both the urine and the circulation. Although the primary form of circulating THP is nonpolymerizing, urinary THP exists as a mix of polymerizing and nonpolymerizing forms. Urinary THP has been shown to play roles in such disparate processes as prevention of urinary tract infections and kidney stone formation, along with the regulation of multiple ion channels within the kidney. The generation of THP knockout mouse models has allowed the investigation of these phenomena and shown a prospective role for circulating THP in ischemia-reperfusion acute kidney injury as well as sepsis. Recent studies have suggested that THP is protective in ischemic injury owing to its inhibition of oxidative stress via the calcium channel transient receptor potential cation channel, subfamily M, member 2 t(TRPM2), and protection in sepsis is at least partially due to THP's promotion of macrophage function.


Assuntos
Injúria Renal Aguda , Canais de Cátion TRPM , Animais , Camundongos , Humanos , Uromodulina/metabolismo , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Camundongos Knockout , Estresse Oxidativo , Canais de Cátion TRPM/metabolismo
6.
Hypertension ; 79(11): 2409-2418, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35959659

RESUMO

Uromodulin (or Tamm-Horsfall protein) is a glycoprotein uniquely produced in the kidney by tubular cells of the thick ascending limb of the loop of Henle and early distal tubules. This protein exhibits bidirectional secretion in the urine and in the renal interstitium and circulation. The role of this protein in maintaining renal and systemic homeostasis is becoming increasingly appreciated. Furthermore, perturbations of its functions may play a role in various diseases affecting the kidney and distant organs. In this review, we will discuss important advances in understanding its biology, highlighting the recent discoveries of its secretion and differential precursor processing that generates 2 forms: (1) a highly polymerizing form that is apically excreted in the urine and generates filaments and (2) a nonpolymerizing form that retains a polymerization inhibitory pro-peptide and is released basolaterally in the kidney interstitium and circulation, but can also be found in the urine. We will also discuss factors regulating its production and release, taking into account its intricate physiology, and propose best practices to report its levels. We also discuss breaking advances in its role in hypertension, acute kidney injury and progression to chronic disease, immunomodulation and regulating renal and systemic oxidative stress. We anticipate that this work will be a great resource for researchers and clinicians. This review will highlight the importance of defining what regulates the 2 forms of uromodulin, so that modulation of uromodulin levels and function could become a novel tool in our therapeutic armamentarium against kidney disease.


Assuntos
Injúria Renal Aguda , Hipertensão , Humanos , Uromodulina/metabolismo , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Hipertensão/metabolismo , Biologia
7.
Am J Physiol Renal Physiol ; 323(2): F212-F226, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759740

RESUMO

Sepsis is a significant cause of mortality in hospitalized patients. Concomitant development of acute kidney injury (AKI) increases sepsis mortality through unclear mechanisms. Although electrolyte disturbances and toxic metabolite buildup during AKI could be important, it is possible that the kidney produces a protective molecule lost during sepsis with AKI. We have previously demonstrated that systemic Tamm-Horsfall protein (THP; uromodulin), a kidney-derived protein with immunomodulatory properties, falls in AKI. Using a mouse sepsis model without severe kidney injury, we showed that the kidney increases circulating THP by enhancing the basolateral release of THP from medullary thick ascending limb cells. In patients with sepsis, changes in circulating THP were positively associated with a critical illness. THP was also found de novo in injured lungs. Genetic ablation of THP in mice led to increased mortality and bacterial burden during sepsis. Consistent with the increased bacterial burden, the presence of THP in vitro and in vivo led macrophages and monocytes to upregulate a transcriptional program promoting cell migration, phagocytosis, and chemotaxis, and treatment of macrophages with purified THP increases phagocytosis. Rescue of septic THP-/- mice with exogenous systemic THP improved survival. Together, these findings suggest that through releasing THP, the kidney modulates the immune response in sepsis by enhancing mononuclear phagocyte function, and systemic THP has therapeutic potential in sepsis.NEW & NOTEWORTHY Specific therapies to improve outcomes in sepsis with kidney injury have been limited by an unclear understanding of how kidney injury increases sepsis mortality. Here, we identified Tamm-Horsfall protein, known to protect in ischemic acute kidney injury, as protective in preclinical sepsis models. Tamm-Horsfall protein also increased in clinical sepsis without severe kidney injury and concentrated in injured organs. Further study could lead to novel sepsis therapeutics.


Assuntos
Injúria Renal Aguda , Sepse , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Modelos Animais de Doenças , Rim/metabolismo , Sepse/complicações , Sepse/metabolismo , Uromodulina/genética , Uromodulina/metabolismo
8.
Cells ; 11(10)2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35626745

RESUMO

The propagation of the obligate intracellular parasite Toxoplasma gondii is tightly regulated by calcium signaling. However, the mechanisms by which calcium homeostasis and fluxes are regulated in this human pathogen are not fully understood. To identify Toxoplasma's calcium homeostasis network, we have characterized a novel EF-hand domain-containing protein, which we have named TgEFP1. We have determined that TgEFP1 localizes to a previously described compartment known as the plant-like vacuole or the endosomal-like compartment (PLV/ELC), which harbors several proteins related to ionic regulation. Interestingly, partial permeabilization techniques showed that TgEFP1 is also secreted into the parasitophorous vacuole (PV), within which the parasite divides. Ultrastructure expansion microscopy confirmed the unusual dual localization of TgEFP1 at the PLV/ELC and the PV. Furthermore, we determined that the localization of TgEFP1 to the PV, but not to the PLV/ELC, is affected by disruption of Golgi-dependent transport with Brefeldin A. Knockout of TgEFP1 results in faster propagation in tissue culture, hypersensitivity to calcium ionophore-induced egress, and premature natural egress. Thus, our work has revealed an interplay between the PV and the PLV/ELC and a role for TgEFP1 in the regulation of calcium-dependent events.


Assuntos
Toxoplasma , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Vacúolos/metabolismo
9.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163625

RESUMO

In addition to being a leading cause of morbidity and mortality worldwide, sepsis is also the most common cause of acute kidney injury (AKI). When sepsis leads to the development of AKI, mortality increases dramatically. Since the cardinal feature of sepsis is a dysregulated host response to infection, a disruption of kidney-immune crosstalk is likely to be contributing to worsening prognosis in sepsis with acute kidney injury. Since immune-mediated injury to the kidney could disrupt its protein manufacturing capacity, an investigation of molecules mediating this crosstalk not only helps us understand the sepsis immune response, but also suggests that their supplementation could have a therapeutic effect. Erythropoietin, vitamin D and uromodulin are known to mediate kidney-immune crosstalk and their disrupted production could impact morbidity and mortality in sepsis with acute kidney injury.


Assuntos
Injúria Renal Aguda/etiologia , Sistema Imunitário , Rim , Sepse/complicações , Animais , Eritropoetina , Humanos , Sepse/imunologia , Sepse/fisiopatologia , Uromodulina , Vitamina D
10.
Am J Physiol Renal Physiol ; 322(4): F403-F418, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100812

RESUMO

Uromodulin [Tamm-Horsfall protein (THP)] is a glycoprotein uniquely produced in the kidney. It is released by cells of the thick ascending limbs apically in the urine and basolaterally in the renal interstitium and systemic circulation. Processing of mature urinary THP, which polymerizes into supramolecular filaments, requires cleavage of an external hydrophobic patch (EHP) at the COOH-terminus. However, THP in the circulation is not polymerized, and it remains unclear if nonaggregated forms of THP exist natively in the urine. We propose that an alternative processing path, which retains the EHP domain, can lead to a nonpolymerizing form of THP. We generated an antibody that specifically recognizes THP with retained EHP (THP + EHP) and established its presence in the urine in a nonpolymerized native state. Proteomic characterization of urinary THP + EHP revealed its COOH-terminus ending at F617. In the human kidney, THP + EHP was detected in thick ascending limb cells and less strongly in the renal parenchyma. Using immunoprecipitation followed by proteomic sequencing and immunoblot analysis, we then demonstrated that serum THP has also retained EHP. In a small cohort of patients at risk for acute kidney injury, admission urinary THP + EHP was significantly lower in patients who subsequently developed acute kidney injury during hospitalization. Our findings uncover novel insights into uromodulin biology by establishing the presence of an alternative path for cellular processing, which could explain the release of nonpolymerizing THP in the circulation. Larger studies are needed to establish the utility of urinary THP + EHP as a sensitive biomarker of kidney health and susceptibility to injury.NEW & NOTEWORTHY In this work, we discovered and characterized a novel form of uromodulin that does not polymerize because it retains an external hydrophobic patch at the COOH-terminus. These findings establish an alternative form of cellular processing of this protein and elucidate new aspects of its biology. We also provide evidence suggesting that measuring urinary nonpolymerizing uromodulin could be a promising assay to assess the risk of acute kidney injury.


Assuntos
Injúria Renal Aguda , Rim , Proteômica , Uromodulina , Injúria Renal Aguda/metabolismo , Humanos , Rim/metabolismo , Uromodulina/química , Uromodulina/urina
11.
Transplantation ; 105(4): 876-885, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32769629

RESUMO

BACKGROUND: Deceased-donor kidneys experience extensive injury, activating adaptive and maladaptive pathways therefore impacting graft function. We evaluated urinary donor uromodulin (UMOD) and osteopontin (OPN) in recipient graft outcomes. METHODS: Primary outcomes: all-cause graft failure (GF) and death-censored GF (dcGF). Secondary outcomes: delayed graft function (DGF) and 6-month estimated glomerular filtration rate (eGFR). We randomly divided our cohort of deceased donors and recipients into training and test datasets. We internally validated associations between donor urine UMOD and OPN at time of procurement, with our primary outcomes. The direction of association between biomarkers and GF contrasted. Subsequently, we evaluated UMOD:OPN ratio with all outcomes. To understand these mechanisms, we examined the effect of UMOD on expression of major histocompatibility complex II in mouse macrophages. RESULTS: Doubling of UMOD increased dcGF risk (adjusted hazard ratio [aHR], 1.1; 95% confidence interval [CI], 1.02-1.2), whereas OPN decreased dcGF risk (aHR, 0.94; 95% CI, 0.88-1). UMOD:OPN ratio ≤3 strengthened the association, with reduced dcGF risk (aHR, 0.57; 0.41-0.80) with similar associations for GF, and in the test dataset. A ratio ≤3 was also associated with lower DGF (aOR, 0.73; 95% CI, 0.60-0.89) and higher 6-month eGFR (adjusted ß coefficient, 3.19; 95% CI, 1.28-5.11). UMOD increased major histocompatibility complex II expression elucidating a possible mechanism behind UMOD's association with GF. CONCLUSIONS: UMOD:OPN ratio ≤3 was protective, with lower risk of DGF, higher 6-month eGFR, and improved graft survival. This ratio may supplement existing strategies for evaluating kidney quality and allocation decisions regarding deceased-donor kidney transplantation.


Assuntos
Função Retardada do Enxerto/etiologia , Taxa de Filtração Glomerular , Sobrevivência de Enxerto , Transplante de Rim/efeitos adversos , Rim/cirurgia , Osteopontina/urina , Doadores de Tecidos , Uromodulina/urina , Adulto , Idoso , Animais , Biomarcadores/urina , Células Cultivadas , Função Retardada do Enxerto/mortalidade , Função Retardada do Enxerto/fisiopatologia , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Rim/fisiopatologia , Transplante de Rim/mortalidade , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Estados Unidos
12.
Kidney Int ; 98(3): 549-552, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32828237

RESUMO

Autosomal dominant tubulointerstitial disease (ADTKD) is a dominantly inherited progressive nonglomerular disease. Several factors, such as a nonspecific clinical presentation and relative rarity, impede the phenotyping of ADTKD into clinically relevant subtypes and impair the appropriate implementation of genetic testing. The study by Olinger et al. describes the largest multicenter ADTKD cohort, which is likely to become a key resource. The authors also provide a new clinical tool that could guide diagnosis and genetic testing.


Assuntos
Nefrite Intersticial , Rim Policístico Autossômico Dominante , Testes Genéticos , Humanos , Mucina-1/genética , Mutação , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/genética , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética
13.
Nephrol Dial Transplant ; 35(1): 33-43, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649494

RESUMO

Biology has taught us that a protein as abundantly made and conserved among species as Tamm-Horsfall protein (THP or uromodulin) cannot just be a waste product serving no particular purpose. However, for many researchers, THP is merely a nuisance during urine proteome profiling or exosome purification and for clinicians an enigmatic entity without clear disease implications. Thanks to recent human genetic and correlative studies and animal modeling, we now have a renewed appreciation of this highly prevalent protein in not only guarding urinary homeostasis, but also serving as a critical mediator in systemic inter-organ signaling. Beyond a mere barrier that lines the tubules, or a surrogate for nephron mass, mounting evidence suggests that THP is a multifunctional protein critical for modulating renal ion channel activity, salt/water balance, renal and systemic inflammatory response, intertubular communication, mineral crystallization and bacterial adhesion. Indeed, mutations in THP cause a group of inherited kidney diseases, and altered THP expression is associated with increased risks of urinary tract infection, kidney stone, hypertension, hyperuricemia and acute and chronic kidney diseases. Despite the recent surge of information surrounding THP's physiological functions and disease involvement, our knowledge remains incomplete regarding how THP is normally regulated by external and intrinsic factors, how precisely THP deficiency leads to urinary and systemic pathophysiology and in what clinical settings THP can be used as a theranostic biomarker and a target for modulation to improve patient outcomes.


Assuntos
Homeostase , Hipertensão/fisiopatologia , Hiperuricemia/fisiopatologia , Cálculos Renais/fisiopatologia , Mutação , Infecções Urinárias/fisiopatologia , Uromodulina/metabolismo , Animais , Biomarcadores/análise , Humanos , Uromodulina/genética
14.
Sci Transl Med ; 11(512)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578243

RESUMO

High serum concentrations of kidney-derived protein uromodulin [Tamm-Horsfall protein (THP)] have recently been shown to be independently associated with low mortality in both older adults and cardiac patients, but the underlying mechanism remains unclear. Here, we show that THP inhibits the generation of reactive oxygen species (ROS) both in the kidney and systemically. Consistent with this experimental data, the concentration of circulating THP in patients with surgery-induced acute kidney injury (AKI) correlated with systemic oxidative damage. THP in the serum dropped after AKI and was associated with an increase in systemic ROS. The increase in oxidant injury correlated with postsurgical mortality and need for dialysis. Mechanistically, THP inhibited the activation of the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) channel. Furthermore, inhibition of TRPM2 in vivo in a mouse model mitigated the systemic increase in ROS during AKI and THP deficiency. Our results suggest that THP is a key regulator of systemic oxidative stress by suppressing TRPM2 activity, and our findings might help explain how circulating THP deficiency is linked with poor outcomes and increased mortality.


Assuntos
Canais de Cátion TRPM/metabolismo , Uromodulina/sangue , Uromodulina/metabolismo , Adulto , Animais , Doxiciclina/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/genética
15.
Int J Parasitol ; 48(3-4): 225-232, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29170086

RESUMO

Antibody detection assays have long been the first line test to confirm infection with the zoonotic parasite Toxoplasma gondii. However, challenges exist with serological diagnosis, especially distinguishing between acute, latent and reactivation disease states. The sensitivity and specificity of serological tests might be improved by testing for antibodies against parasite antigens other than those typically found on the parasite surface during the acute stage. To this end, we analysed the reactivity profile of human sera, identified as positive for anti-Toxoplasma gondii IgG in traditional assays, by indirect immunofluorescence reactivity to acute stage intracellular tachyzoites and in vitro-induced latent stage bradyzoites. The majority of anti-Toxoplasma gondii IgG positive sera recognised both intracellularly replicating tachyzoites and in vitro-induced bradyzoites with varying patterns of immune-reactivity. Furthermore, anti-bradyzoite antibodies were not detected in sera that were IgM-positive/IgG-negative. These results demonstrate that anti-Toxoplasma gondii-positive sera may contain antibodies to a variety of antigens in addition to those traditionally used in serological tests, and suggest the need for further investigations into the utility of anti-bradyzoite-specific antibodies to aid in diagnosis of Toxoplasma gondii infection.


Assuntos
Anticorpos Antiprotozoários/sangue , Toxoplasma/imunologia , Toxoplasma/isolamento & purificação , Adolescente , Adulto , Fatores Etários , Idoso , Animais , Anticorpos Antiprotozoários/imunologia , Western Blotting , Criança , Chlorocebus aethiops , Feminino , Fibroblastos , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Células Vero , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-29158278

RESUMO

Protozoan parasites, including the apicomplexan pathogens Plasmodium falciparum (which causes malaria) and Toxoplasma gondii (which causes toxoplasmosis), infect millions of people worldwide and represent major human disease burdens. Despite their prevalence, therapeutic strategies to treat infections caused by these parasites remain limited and are threatened by the emergence of drug resistance, highlighting the need for the identification of novel drug targets. Recently, homologues of the core autophagy proteins, including Atg8 and Atg3, were identified in many protozoan parasites. Importantly, components of the Atg8 conjugation system that facilitate the lipidation of Atg8 are required for both canonical and parasite-specific functions and are essential for parasite viability. Structural characterization of the P. falciparum Atg3-Atg8 (PfAtg3-Atg8) interaction has led to the identification of compounds that block this interaction. Additionally, many of these compounds inhibit P. falciparum growth in vitro, demonstrating the viability of this pathway as a drug target. Given the essential role of the Atg8 lipidation pathway in Toxoplasma, we sought to determine whether three PfAtg3-Atg8 interaction inhibitors identified in the Medicines for Malaria Venture Malaria Box exerted a similar inhibitory effect in Toxoplasma While all three inhibitors blocked Toxoplasma replication in vitro at submicromolar concentrations, they did not inhibit T. gondii Atg8 (TgAtg8) lipidation. Rather, high concentrations of two of these compounds induced TgAtg8 lipidation and fragmentation of the parasite mitochondrion, similar to the effects seen following starvation and monensin-induced autophagy. Additionally, we report that one of the PfAtg3-Atg8 interaction inhibitors induces Toxoplasma egress and provide evidence that this is mediated by an increase in intracellular calcium in response to drug treatment.


Assuntos
Antiprotozoários/farmacologia , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Toxoplasma/efeitos dos fármacos , Sequência de Aminoácidos , Antiprotozoários/química , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Sítios de Ligação , Replicação do DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Expressão Gênica , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Simulação de Acoplamento Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Bibliotecas de Moléculas Pequenas/química , Especificidade da Espécie , Relação Estrutura-Atividade , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
17.
Cell Microbiol ; 19(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28436089

RESUMO

Toxoplasma gondii is an obligate intracellular apicomplexan parasite with high seroprevalence in humans. Repeated lytic cycles of invasion, replication, and egress drive both the propagation and the virulence of this parasite. Key steps in this cycle, including invasion and egress, depend on tightly regulated calcium fluxes and, although many of the calcium-dependent effectors have been identified, the factors that detect and regulate the calcium fluxes are mostly unknown. To address this knowledge gap, we used a forward genetic approach to isolate mutants resistant to extracellular exposure to the calcium ionophore A23187. Through whole genome sequencing and complementation, we have determined that a nonsense mutation in a previously uncharacterised protein is responsible for the ionophore resistance of one of the mutants. The complete loss of this protein recapitulates the resistance phenotype and importantly shows defects in calcium regulation and in the timing of egress. The affected protein, GRA41, localises to the dense granules and is secreted into the parasitophorous vacuole where it associates with the tubulovesicular network. Our findings support a connection between the tubulovesicular network and ion homeostasis within the parasite, and thus a novel role for the vacuole of this important pathogen.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/parasitologia , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasmose/transmissão , Vacúolos/metabolismo
18.
Biochemistry ; 52(17): 2955-66, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23597102

RESUMO

The essential base excision repair protein, apurinic/apyrimidinic endonuclease 1 (APE1), plays an important role in redox regulation in cells and is currently targeted for the development of cancer therapeutics. One compound that binds APE1 directly is (E)-3-[2-(5,6-dimethoxy-3-methyl-1,4-benzoquinonyl)]-2-nonylpropenoic acid (E3330). Here, we revisit the mechanism by which this negatively charged compound interacts with APE1 and inhibits its redox activity. At high concentrations (millimolar), E3330 interacts with two regions in the endonuclease active site of APE1, as mapped by hydrogen-deuterium exchange mass spectrometry. However, this interaction lowers the melting temperature of APE1, which is consistent with a loss of structure in APE1, as measured by both differential scanning fluorimetry and circular dichroism. These results are consistent with other findings that E3330 concentrations of >100 µM are required to inhibit APE1's endonuclease activity. To determine the role of E3330's negatively charged carboxylate in redox inhibition, we converted the carboxylate to an amide by synthesizing (E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)methylene]-N-methoxy-undecanamide (E3330-amide), a novel uncharged derivative. E3330-amide has no effect on the melting temperature of APE1, suggesting that it does not interact with the fully folded protein. However, E3330-amide inhibits APE1's redox activity in in vitro electrophoretic mobility shift redox and cell-based transactivation assays, producing IC(50) values (8.5 and 7 µM) lower than those produced with E3330 (20 and 55 µM, respectively). Thus, E3330's negatively charged carboxylate is not required for redox inhibition. Collectively, our results provide additional support for a mechanism of redox inhibition involving interaction of E3330 or E3330-amide with partially unfolded APE1.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Fluorometria , Espectrometria de Massas , Modelos Moleculares , Oxirredução , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA