Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genome Ed ; 5: 1074641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032710

RESUMO

The advent of CRISPR-Cas technology has made it the genome editing tool of choice in all kingdoms of life, including plants, which can have large, highly duplicated genomes. As a result, finding adequate target sequences that meet the specificities of a given Cas nuclease on any gene of interest remains challenging in many cases. To assess target site flexibility, we tested five different Cas9/Cas12a endonucleases (SpCas9, SaCas9, St1Cas9, Mb3Cas12a, and AsCas12a) in embryogenic rice calli from Taipei 309 at 37°C (optimal temperature for most Cas9/Cas12a proteins) and 27°C (optimal temperature for tissue culture) and measured their editing rates under regular tissue culture conditions using Illumina sequencing. StCas9 and AsCas12 were not functional as tested, regardless of the temperature used. SpCas9 was the most efficient endonuclease at either temperature, regardless of whether monoallelic or biallelic edits were considered. Mb3Cas12a at 37°C was the next most efficient endonuclease. Monoallelic edits prevailed for both SaCas9 and Mb3Cas12a at 27°C, but biallelic edits prevailed at 37°C. Overall, the use of other Cas9 orthologs, the use of Cas12a endonucleases, and the optimal temperature can expand the range of targetable sequences.

2.
Plant Direct ; 4(1): e00178, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31911959

RESUMO

In plants, the phenylpropanoid pathway is responsible for the synthesis of a diverse array of secondary metabolites that include lignin monomers, flavonoids, and coumarins, many of which are essential for plant structure, biomass recalcitrance, stress defense, and nutritional quality. Our previous studies have demonstrated that Populus trichocarpa PtrEPSP-TF, an isoform of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, has transcriptional activity and regulates phenylpropanoid biosynthesis in Populus. In this study, we report the identification of single nucleotide polymorphism (SNP) of PtrEPSP-TF that defines its functionality. Populus natural variants carrying this SNP were shown to have reduced lignin content. Here, we demonstrated that the SNP-induced substitution of 142nd amino acid (PtrEPSP-TFD142E) dramatically impairs the DNA-binding and transcriptional activity of PtrEPSP-TF. When introduced to a monocot species rice (Oryza sativa) in which an EPSP synthase isoform with the DNA-binding helix-turn-helix (HTH) motif is absent, the PtrEPSP-TF, but not PtrEPSP-TFD142E, activated genes in the phenylpropanoid pathway. More importantly, heterologous expression of PtrEPSP-TF uncovered five new transcriptional regulators of phenylpropanoid biosynthesis in rice. Collectively, this study identifies the key amino acid required for PtrEPSP-TF functionality and provides a strategy to uncover new transcriptional regulators in phenylpropanoid biosynthesis.

3.
Nat Biotechnol ; 36(3): 249-257, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431741

RESUMO

Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an α-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.


Assuntos
Biocombustíveis , Parede Celular/genética , Glucuronosiltransferase/genética , Pectinas/biossíntese , Biomassa , Boro/metabolismo , Cálcio/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Produtos Agrícolas , Glucuronosiltransferase/química , Panicum/enzimologia , Panicum/genética , Pectinas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Populus/enzimologia , Populus/genética , Açúcares/metabolismo
4.
Plant Biotechnol J ; 14(1): 117-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25816689

RESUMO

In plants, particular micro-RNAs (miRNAs) induce the production of a class of small interfering RNAs (siRNA) called trans-acting siRNA (ta-siRNA) that lead to gene silencing. A single miRNA target is sufficient for the production of ta-siRNAs, which target can be incorporated into a vector to induce the production of siRNAs, and ultimately gene silencing. The term miRNA-induced gene silencing (MIGS) has been used to describe such vector systems in Arabidopsis. Several ta-siRNA loci have been identified in soybean, but, prior to this work, few of the inducing miRNAs have been experimentally validated, much less used to silence genes. Nine ta-siRNA loci and their respective miRNA targets were identified, and the abundance of the inducing miRNAs varies dramatically in different tissues. The miRNA targets were experimentally verified by silencing a transgenic GFP gene and two endogenous genes in hairy roots and transgenic plants. Small RNAs were produced in patterns consistent with the utilization of the ta-siRNA pathway. A side-by-side experiment demonstrated that MIGS is as effective at inducing gene silencing as traditional hairpin vectors in soybean hairy roots. Soybean plants transformed with MIGS vectors produced siRNAs and silencing was observed in the T1 generation. These results complement previous reports in Arabidopsis by demonstrating that MIGS is an efficient way to produce siRNAs and induce gene silencing in other species, as shown with soybean. The miRNA targets identified here are simple to incorporate into silencing vectors and offer an effective and efficient alternative to other gene silencing strategies.


Assuntos
Inativação Gênica , RNA Interferente Pequeno/metabolismo , Sequência de Bases , Genes de Plantas , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Glycine max/genética
5.
PLoS One ; 10(9): e0138196, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26376481

RESUMO

The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis) to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 µg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, ß-carotene, phytoene, α-carotene, lycopene, and ß-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a ß-carotene hydroxylase in addition to a ß-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds.


Assuntos
Carotenoides/biossíntese , Glycine max/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Transgenes/fisiologia , Cantaxantina/biossíntese , Clonagem Molecular , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Glycine max/genética , Glycine max/crescimento & desenvolvimento
6.
BMC Biotechnol ; 15: 16, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25879861

RESUMO

BACKGROUND: The ability to selectively alter genomic DNA sequences in vivo is a powerful tool for basic and applied research. The CRISPR/Cas9 system precisely mutates DNA sequences in a number of organisms. Here, the CRISPR/Cas9 system is shown to be effective in soybean by knocking-out a green fluorescent protein (GFP) transgene and modifying nine endogenous loci. RESULTS: Targeted DNA mutations were detected in 95% of 88 hairy-root transgenic events analyzed. Bi-allelic mutations were detected in events transformed with eight of the nine targeting vectors. Small deletions were the most common type of mutation produced, although SNPs and short insertions were also observed. Homoeologous genes were successfully targeted singly and together, demonstrating that CRISPR/Cas9 can both selectively, and generally, target members of gene families. Somatic embryo cultures were also modified to enable the production of plants with heritable mutations, with the frequency of DNA modifications increasing with culture time. A novel cloning strategy and vector system based on In-Fusion® cloning was developed to simplify the production of CRISPR/Cas9 targeting vectors, which should be applicable for targeting any gene in any organism. CONCLUSIONS: The CRISPR/Cas9 is a simple, efficient, and highly specific genome editing tool in soybean. Although some vectors are more efficient than others, it is possible to edit duplicated genes relatively easily. The vectors and methods developed here will be useful for the application of CRISPR/Cas9 to soybean and other plant species.


Assuntos
Sistemas CRISPR-Cas/genética , Engenharia Genética/métodos , Genoma de Planta/genética , Glycine max/genética , Técnicas de Inativação de Genes , Vetores Genéticos/genética , Mutação , Plantas Geneticamente Modificadas/genética , Sementes/genética
7.
Plant Cell Rep ; 33(2): 313-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24177598

RESUMO

Transformation of elite switchgrass (Panicum virgatum L.) genotypes would facilitate the characterization of genes related to cell wall recalcitrance to saccharification. However, transformation of explants from switchgrass plants has remained difficult. Therefore, the objective of this study was to develop a biolistic transformation protocol for elite genotypes. Three switchgrass genotypes (ST1, ST2, and AL2) were previously selected for tissue culture responsiveness. One genotype, SA37, was selected for further use due to its improved formation of callus amenable to transformation. Various medium sets were compared and a previously published medium set provided cultures with >96 % embryogenic callus, and data on transient and stable gene expression of RFP were used to optimize biolistic parameters, and further validate the switchgrass (PvUbi1) promoter. SA37 proved to be the most transformable, whereas eight transgenic calli on average were recovered per bombardment of 20 calli (40 % efficiency) when using a three-day day preculture step, 0.6 M osmotic adjustment medium, 4,482 kPa rupture disks and 0.4 µm gold particles which traveled 9 cm before hitting the target callus tissue. Regenerability was high, especially for ST2, for which it is possible to recover on average over 400 plants per half-gram callus tissue. It is now possible to routinely and efficiently engineer elite switchgrass genotypes using biolistic transformation.


Assuntos
Biolística/métodos , Engenharia Genética/métodos , Panicum/genética , Transformação Genética , Genes Reporter , Vetores Genéticos , Genótipo , Panicum/classificação , Técnicas de Embriogênese Somática de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Regeneração , Técnicas de Cultura de Tecidos
8.
Plant Biotechnol J ; 10(2): 226-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21955653

RESUMO

Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway-compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpression or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was functionally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.


Assuntos
Produtos Agrícolas/genética , Vetores Genéticos/genética , Panicum/genética , Produtos Agrícolas/metabolismo , Etanol/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Oryza/genética , Panicum/metabolismo , Plantas Geneticamente Modificadas , Transformação Genética
9.
BMC Biotechnol ; 11: 74, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21745390

RESUMO

BACKGROUND: The ubiquitin protein is present in all eukaryotic cells and promoters from ubiquitin genes are good candidates to regulate the constitutive expression of transgenes in plants. Therefore, two switchgrass (Panicum virgatum L.) ubiquitin genes (PvUbi1 and PvUbi2) were cloned and characterized. Reporter constructs were produced containing the isolated 5' upstream regulatory regions of the coding sequences (i.e. PvUbi1 and PvUbi2 promoters) fused to the uidA coding region (GUS) and tested for transient and stable expression in a variety of plant species and tissues. RESULTS: PvUbi1 consists of 607 bp containing cis-acting regulatory elements, a 5' untranslated region (UTR) containing a 93 bp non-coding exon and a 1291 bp intron, and a 918 bp open reading frame (ORF) that encodes four tandem, head -to-tail ubiquitin monomer repeats followed by a 191 bp 3' UTR. PvUbi2 consists of 692 bp containing cis-acting regulatory elements, a 5' UTR containing a 97 bp non-coding exon and a 1072 bp intron, a 1146 bp ORF that encodes five tandem ubiquitin monomer repeats and a 183 bp 3' UTR. PvUbi1 and PvUbi2 were expressed in all examined switchgrass tissues as measured by qRT-PCR. Using biolistic bombardment, PvUbi1 and PvUbi2 promoters showed strong expression in switchgrass and rice callus, equaling or surpassing the expression levels of the CaMV 35S, 2x35S, ZmUbi1, and OsAct1 promoters. GUS staining following stable transformation in rice demonstrated that the PvUbi1 and PvUbi2 promoters drove expression in all examined tissues. When stably transformed into tobacco (Nicotiana tabacum), the PvUbi2+3 and PvUbi2+9 promoter fusion variants showed expression in vascular and reproductive tissues. CONCLUSIONS: The PvUbi1 and PvUbi2 promoters drive expression in switchgrass, rice and tobacco and are strong constitutive promoter candidates that will be useful in genetic transformation of monocots and dicots.


Assuntos
Genes de Plantas , Técnicas Genéticas , Panicum/genética , Poliubiquitina/genética , Regiões Promotoras Genéticas , Dados de Sequência Molecular , Oryza/genética , Plantas Geneticamente Modificadas , Nicotiana/genética , Transformação Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA