Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Neural Regen Res ; 16(11): 2234-2242, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33818507

RESUMO

Metformin, a first-line drug for type-2 diabetes, has been shown to improve locomotor recovery after spinal cord injury. However, there are studies reporting no beneficial effect. Recently, we found that high dose of metformin (200 mg/kg, intraperitoneal) and acute phase administration (immediately after injury) led to increased mortality and limited locomotor function recovery. Consequently, we used a lower dose (100 mg/kg, i.p.) metformin in mice, and compared the effect of immediate administration after spinal cord injury (acute phase) with that of administration at 3 days post-injury (subacute phase). Our data showed that metformin treatment starting at the subacute phase significantly improved mouse locomotor function evaluated by Basso Mouse Scale (BMS) scoring. Immunohistochemical studies also revealed significant inhibitions of microglia/macrophage activation and astrogliosis at the lesion site. Furthermore, metformin treatment at the subacute phase reduced neutrophil infiltration. These changes were in parallel with the increased survival rate of spinal neurons in animals treated with metformin. These findings suggest that low-dose metformin treatment for subacute spinal cord injury can effectively improve the functional recovery possibly through anti-inflammation and neuroprotection. This study was approved by the Institute Animal Care and Use Committee at the University of Texas Medical Branch (approval No. 1008041C) in 2010.

3.
Neurochem Int ; 120: 21-32, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30041015

RESUMO

Human neural stem cells (hNSCs) can differentiate into an oligodendrocyte lineage to facilitate remyelination in patients. Molecular mechanisms underlying oligodendrocyte fate specification remains unknown, hindering the development of efficient methods to generate oligodendrocytes from hNSCs. We have found that Neurobasal-A medium (NB) is capable of inducing hNSCs to oligodendrocyte progenitor cells (OPCs). We identified several signaling molecules are altered after cultivation in NB medium, including Akt, ERK1/2 and c-Src. While sustained activation of Akt and ERK1/2 during both NB induction and subsequent differentiation was required for OPC differentiation, c-Src phosphorylation was increased temporally during the period of NB induction. Both pharmacological inhibition and RNA interference confirmed that a transient elevation of phospho-c-Src is critical for OPC induction. Furthermore, inactivation of c-Src inhibited phosphorylation of Akt and ERK1/2. In summary, we identified a novel and critical role of c-Src in guiding hNSC differentiation to an oligodendrocyte lineage.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Quinases da Família src/metabolismo , Proteína Tirosina Quinase CSK , Linhagem da Célula/fisiologia , Humanos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Bainha de Mielina/metabolismo , Neurogênese/fisiologia
4.
Cell Transplant ; 25(10): 1863-1877, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26980267

RESUMO

Neural stem cells (NSCs) promote recovery from brain trauma, but neuronal replacement is unlikely the sole underlying mechanism. We hypothesize that grafted NSCs enhance neural repair at least partially through modulating the host immune response after traumatic brain injury (TBI). C57BL/6 mice were intracerebrally injected with primed human NSCs (hNSCs) or vehicle 24 h after a severe controlled cortical impact injury. Six days after transplantation, brain tissues were collected for Western blot and immunohistochemical analyses. Observations included indicators of microglia/macrophage activation, M1 and M2 phenotypes, axonal injury detected by amyloid precursor protein (APP), lesion size, and the fate of grafted hNSCs. Animals receiving hNSC transplantation did not show significant decreases of brain lesion volumes compared to transplantation procedures with vehicle alone, but did show significantly reduced injury-dependent accumulation of APP. Furthermore, intracerebral transplantation of hNSCs reduced microglial activation as shown by a diminished intensity of Iba1 immunostaining and a transition of microglia/macrophages toward the M2 anti-inflammatory phenotype. The latter was represented by an increase in the brain M2/M1 ratio and increases of M2 microglial proteins. These phenotypic switches were accompanied by the increased expression of anti-inflammatory interleukin-4 receptor α and decreased proinflammatory interferon-γ receptor ß. Finally, grafted hNSCs mainly differentiated into neurons and were phagocytized by either M1 or M2 microglia/macrophages. Thus, intracerebral transplantation of primed hNSCs efficiently leads host microglia/macrophages toward an anti-inflammatory phenotype that presumably contributes to stem cell-mediated neuroprotective effects after severe TBI in mice.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Macrófagos/metabolismo , Microglia/metabolismo , Células-Tronco Neurais/transplante , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígeno B7-2/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Diferenciação Celular , Células Cultivadas , Humanos , Subunidade alfa de Receptor de Interleucina-4/genética , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/imunologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , Fagocitose , Fenótipo , Receptores de Superfície Celular/metabolismo , Receptores de IgG/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA