Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(21): 13517-13527, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753950

RESUMO

Solid-state reactions play a key role in materials science. The evolution of the structure of a single 350 nm Ni3Fe nanoparticle, i.e., its morphology (facets) as well as its deformation field, has been followed by applying multireflection Bragg coherent diffraction imaging. Through this approach, we unveiled a demixing process that occurs at high temperatures (600 °C) under an Ar atmosphere. This process leads to the gradual emergence of a highly strained core-shell structure, distinguished by two distinct lattice parameters with a difference of 0.4%. Concurrently, this transformation causes the facets to vanish, ultimately yielding a rounded core-shell nanoparticle. This final structure comprises a Ni3Fe core surrounded by a 40 nm Ni-rich outer shell due to preferential iron oxidation. Providing in situ 3D imaging of the lattice parameters at the nanometer scale while varying the temperature, this study─with the support of atomistic simulations─not only showcases the power of in situ multireflection BCDI but also provides valuable insights into the mechanisms at work during a solid-state reaction characterized by a core-shell transition.

2.
Chemistry ; 29(72): e202302444, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37932038

RESUMO

1,2-Azaborinines are the BN analogues of arynes through exchange of the formal CC triple bond by an isoelectronic BN bond. The BN-arynes are an underexplored class of reactive intermediates. Dibenzo[c,e][1,2]azaborinine (10,9-BN-phenanthryne) 1 was inferred as reactive intermediate by trapping reactions. Here it is shown that 1 can be generated in the gas phase by thermolysis from the pyridine adduct of 9-azido-9-borafluorene by cleavage of the dative bond with pyridine and dinitrogen extrusion. The ionization potential of 1 is 8.2 eV with ionization resulting from the π HOMO. Under cryogenic matrix isolation conditions, 9-azido-9-borafluorene photolysis results in isomerization to the dinitrogen adduct of 1 without involvement of a triplet borylnitrene intermediate. Photochemical nitrogen extrusion from 1 ⋅ N2 is not possible and nitrogen fixation is irreversible under cryogenic conditions. In contrast, 2,4,7,9-tetra-tert-butyldibenzo[c,e][1,2]azaborinine can be photogenerated from the corresponding azidoborole precursor under cryogenic matrix isolation conditions, and nitrogen fixation is precluded due to steric hindrance. The BN stretching vibration at about 1750 cm-1 is much weaker than in typical linear diaryl iminoboranes.

3.
ACS Nano ; 17(6): 6113-6120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926832

RESUMO

At the nanoscale, the properties of materials depend critically on the presence of crystal defects. However, imaging and characterizing the structure of defects in three dimensions inside a crystal remain a challenge. Here, by using Bragg coherent diffraction imaging, we observe an unexpected anomalous {110} glide plane in two Pt submicrometer crystals grown by very different processes and having very different morphologies. The structure of the defects (type, associated glide plane, and lattice displacement) is imaged in these faceted Pt crystals. Using this noninvasive technique, both plasticity and unusual defect behavior can be probed at the nanoscale.

4.
Materials (Basel) ; 15(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36143513

RESUMO

The microstructure of a sub-micrometric gold crystal during nanoindentation is visualized by in situ multi-wavelength Bragg coherent X-ray diffraction imaging. The gold crystal is indented using a custom-built atomic force microscope. A band of deformation attributed to a shear band oriented along the (221) lattice plane is nucleated at the lower left corner of the crystal and propagates towards the crystal center with increasing applied mechanical load. After complete unloading, an almost strain-free and defect-free crystal is left behind, demonstrating a pseudo-elastic behavior that can only be studied by in situ imaging while it is invisible to ex situ examinations. The recovery is probably associated with reversible dislocations nucleation/annihilation at the side surface of the particle and at the particle-substrate interface, a behavior that has been predicted by atomistic simulations. The full recovery of the particle upon unloading sheds new light on extraordinary mechanical properties of metal nanoparticles obtained by solid-state dewetting.

5.
Nat Commun ; 13(1): 3003, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637233

RESUMO

Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.

6.
Nanomaterials (Basel) ; 12(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458070

RESUMO

The quantification and localization of elastic strains and defects in crystals are necessary to control and predict the functioning of materials. The X-ray imaging of strains has made very impressive progress in recent years. On the one hand, progress in optical elements for focusing X-rays now makes it possible to carry out X-ray diffraction mapping with a resolution in the 50-100 nm range, while lensless imaging techniques reach a typical resolution of 5-10 nm. This continuous evolution is also a consequence of the development of new two-dimensional detectors with hybrid pixels whose dynamics, reading speed and low noise level have revolutionized measurement strategies. In addition, a new accelerator ring concept (HMBA network: hybrid multi-bend achromat lattice) is allowing a very significant increase (a factor of 100) in the brilliance and coherent flux of synchrotron radiation facilities, thanks to the reduction in the horizontal size of the source. This review is intended as a progress report in a rapidly evolving field. The next ten years should allow the emergence of three-dimensional imaging methods of strains that are fast enough to follow, in situ, the evolution of a material under stress or during a transition. Handling massive amounts of data will not be the least of the challenges.

7.
Nat Commun ; 12(1): 5385, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508094

RESUMO

At the nanoscale, elastic strain and crystal defects largely influence the properties and functionalities of materials. The ability to predict the structural evolution of catalytic nanocrystals during the reaction is of primary importance for catalyst design. However, to date, imaging and characterising the structure of defects inside a nanocrystal in three-dimensions and in situ during reaction has remained a challenge. We report here an unusual twin boundary migration process in a single platinum nanoparticle during CO oxidation using Bragg coherent diffraction imaging as the characterisation tool. Density functional theory calculations show that twin migration can be correlated with the relative change in the interfacial energies of the free surfaces exposed to CO. The x-ray technique also reveals particle reshaping during the reaction. In situ and non-invasive structural characterisation of defects during reaction opens new avenues for understanding defect behaviour in confined crystals and paves the way for strain and defect engineering.

8.
Small ; 17(18): e2007702, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738928

RESUMO

Studying model nanoparticles is one approach to better understand the structural evolution of a catalyst during reactions. These nanoparticles feature well-defined faceting, offering the possibility to extract structural information as a function of facet orientation and compare it to theoretical simulations. Using Bragg Coherent X-ray Diffraction Imaging, the uniformity of electrochemically synthesized model catalysts is studied, here high-index faceted tetrahexahedral (THH) platinum nanoparticles at ambient conditions. 3D images of an individual nanoparticle are obtained, assessing not only its shape but also the specific components of the displacement and strain fields both at the surface of the nanocrystal and inside. The study reveals structural diversity of shapes and defects, and shows that the THH platinum nanoparticles present strain build-up close to facets and edges. A facet recognition algorithm is further applied to the imaged nanoparticles and provides facet-dependent structural information for all measured nanoparticles. In the context of strain engineering for model catalysts, this study provides insight into the shape-controlled synthesis of platinum nanoparticles with high-index facets.

10.
ACS Nano ; 14(8): 10305-10312, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806035

RESUMO

Gallium nitride (GaN) is of technological importance for a wide variety of optoelectronic applications. Defects in GaN, like inversion domain boundaries (IDBs), significantly affect the electrical and optical properties of the material. We report, here, on the structural configurations of planar inversion domain boundaries inside n-doped GaN wires measured by Bragg coherent X-ray diffraction imaging. Different complex domain configurations are revealed along the wires with a 9 nm in-plane spatial resolution. We demonstrate that the IDBs change their direction of propagation along the wires, promoting Ga-terminated domains and stabilizing into {11̅00}, that is, m-planes. The atomic phase shift between the Ga- and N-terminated domains was extracted using phase-retrieval algorithms, revealing an evolution of the out-of-plane displacement (∼5 pm, at maximum) between inversion domains along the wires. This work provides an accurate inner view of planar defects inside small crystals.

11.
Sci Rep ; 10(1): 12760, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728084

RESUMO

We explore the use of continuous scanning during data acquisition for Bragg coherent diffraction imaging, i.e., where the sample is in continuous motion. The fidelity of continuous scanning Bragg coherent diffraction imaging is demonstrated on a single Pt nanoparticle in a flow reactor at [Formula: see text] in an Ar-based gas flowed at 50 ml/min. We show a reduction of 30% in total scan time compared to conventional step-by-step scanning. The reconstructed Bragg electron density, phase, displacement and strain fields are in excellent agreement with the results obtained from conventional step-by-step scanning. Continuous scanning will allow to minimise sample instability under the beam and will become increasingly important at diffraction-limited storage ring light sources.

12.
Sci Rep ; 9(1): 17357, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758040

RESUMO

Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique to image the local displacement field and strain in nanocrystals, in three dimensions with nanometric spatial resolution. However, BCDI relies on both dataset collection and phase retrieval algorithms that can induce artefacts in the reconstruction. Phase retrieval algorithms are based on the fast Fourier transform (FFT). We demonstrate how to calculate the displacement field inside a nanocrystal from its reconstructed phase depending on the mathematical convention used for the FFT. We use numerical simulations to quantify the influence of experimentally unavoidable detector deficiencies such as blind areas or limited dynamic range as well as post-processing filtering on the reconstruction. We also propose a criterion for the isosurface determination of the object, based on the histogram of the reconstructed modulus. Finally, we study the capability of the phasing algorithm to quantitatively retrieve the surface strain (i.e., the strain of the surface voxels). This work emphasizes many aspects that have been neglected so far in BCDI, which need to be understood for a quantitative analysis of displacement and strain based on this technique. It concludes with the optimization of experimental parameters to improve throughput and to establish BCDI as a reliable 3D nano-imaging technique.

13.
Nanoscale ; 11(1): 331-338, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30534681

RESUMO

The catalytic activity of metal nanoparticles can be altered by applying strain, which changes the crystalline lattice spacing and modifies the electronic properties of the metal. Understanding the role of elastic strain during catalytic reactions is thus crucial for catalyst design. Here, we show how single highly faceted Pt nanoparticles expand or contract upon interaction with different gas atmospheres using in situ nano-focused coherent X-ray diffraction imaging. We also demonstrate inter-particle heterogeneities, as they differ in development of strain under CO oxidation reaction conditions. The reported observations offer new insights into the design of catalysts exploiting strain effects.

14.
Nanoscale ; 10(10): 4833-4840, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29473085

RESUMO

The physical and chemical properties of nanostructures depend on their surface facets. Here, we exploit a pole figure approach to determine the three-dimensional orientation matrix of a nanostructure from a single Bragg reflection measured with a coherent nano-focused X-ray beam. The signature of any truncated (faceted) crystal produces a crystal truncation rod, which corresponds to a streak of intensity in reciprocal space normal to the surface. When two or more non-parallel facets are present, both the crystal orientation and the crystal facets can be identified. This enables facets to be rapidly indexed and uncommon facets, and planar defects, that have been difficult to study before to be identified. We demonstrate the technique with (i) epitaxial core-shell InGaN/GaN multiple quantum-wells grown on GaN nanowires, where surface facets and planar defects are determined, and (ii) single randomly oriented highly faceted tetrahedrahexal Pt nanoparticles. The methodology is applicable to a broad range of nanocrystals and provides a unique insight into the connection between structure and properties of nanomaterials.

15.
ACS Nano ; 9(9): 9210-6, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26322655

RESUMO

Interfaces between polarity domains in nitride semiconductors, the so-called Inversion Domain Boundaries (IDB), have been widely described, both theoretically and experimentally, as perfect interfaces (without dislocations and vacancies). Although ideal planar IDBs are well documented, the understanding of their configurations and interactions inside crystals relies on perfect-interface assumptions. Here, we report on the microscopic configuration of IDBs inside n-doped gallium nitride wires revealed by coherent X-ray Bragg imaging. Complex IDB configurations are evidenced with 6 nm resolution and the absolute polarity of each domain is unambiguously identified. Picoscale displacements along and across the wire are directly extracted from several Bragg reflections using phase retrieval algorithms, revealing rigid relative displacements of the domains and the absence of microscopic strain away from the IDBs. More generally, this method offers an accurate inner view of the displacements and strain of interacting defects inside small crystals that may alter optoelectronic properties of semiconductor devices.

16.
Chemistry ; 19(50): 17113-24, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24307368

RESUMO

The anionic heterocycle "[maloNHC](-)", ([1](-)), is the archetype of a growing family of N-heterocyclic carbenes incorporating an anionic backbone; here, a malonate group. A comprehensive experimental exploration of its chemistry as a free entity (in the form of its lithium salt [1]·Li) is presented, and rationalized using DFT calculations at the B3LYP/6-31+G** level of theory. For the sake of comparison, similar computations were performed on other representative carbene types. Reactions of [1]·Li with a broad series of electrophilic reagents were used to ascertain its intrinsic nature as a nucleophilic carbene. Unexpectedly, [1]·Li was also seen to react with the nucleophilic tert-butylisocyanide, to give an anionic ketenimine, which could be subsequently derivatized, either into an imine by protonation of the ketenimine moiety, or into a neutral ketenimine by alkylation of the intracyclic malonate moiety. Further experiments on the electrophilic behavior of [1]·Li revealed its unexpected reactivity toward p-chlorobenzaldehyde, resulting in a formal C-H activation and the first structurally characterized keto-tautomer of the Breslow intermediate. Finally, [1]·Li remarkably activates polar E-H bonds, including N-H bonds from ammonia and amines, Si-H bonds, and B-H bonds. Importantly, DFT calculations indicate the importance of counterion effects. In particular, the key to the observed reactivity appears to be a modulation of energy levels associated with a dynamic variability of the Li-O distance between the remote malonate group and the counterion.

17.
Appl Opt ; 41(16): 3270-6, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12064412

RESUMO

Piezoelectric transparent thin films are of great interest for use in tunable filters. We present experimental results on Ta2O5 single layers coated on fused-silica substrates with an electron-beam deposition process. Above 450 degrees C, coatings change from an amorphous to a polycrystallized structure. When this structure shows a preferred orientation matching the piezoelectric tensor of the Ta2O5 crystal and the external electric field, variation in the piezoelectric layer thickness is expected. We detail experimental results in terms of optical (spectrophotometric and scattering measurements) and nonoptical characterizations (x-ray diffraction and scanning electron microscopy). Then the resultant thickness variation under oscillating applied voltage is measured with an extrinsic Fabry-Perot interferometer setup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA