Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 103(10): 103001, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19792300

RESUMO

We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped (88)Sr(+) ion in the resolved-sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405 (2001)] without any free parameters, validating the rate equation model for cavity cooling.

2.
Phys Rev Lett ; 101(18): 180602, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18999810

RESUMO

Electric field noise from fluctuating patch potentials is a significant problem for a broad range of precision experiments, including trapped ion quantum computation and single spin detection. Recent results demonstrated strong suppression of this noise by cryogenic cooling, suggesting an underlying thermal process. We present measurements characterizing the temperature and frequency dependence of the noise from 7 to 100 K, using a single Sr+ ion trapped 75 mum above the surface of a gold plated surface electrode ion trap. The noise amplitude is observed to have an approximate 1/f spectrum around 1 MHz, and grows rapidly with temperature as T;{beta} for beta from 2 to 4. The data are consistent with microfabricated cantilever measurements of noncontact friction but do not extrapolate to the dc measurements with neutral atoms or contact potential probes.

3.
Phys Rev Lett ; 100(1): 013001, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18232755

RESUMO

Dense arrays of trapped ions provide one way of scaling up ion trap quantum information processing. However, miniaturization of ion traps is currently limited by sharply increasing motional state decoherence at sub-100 mum ion-electrode distances. We characterize heating rates in cryogenically cooled surface-electrode traps, with characteristic sizes in the 75 to 150 mum range. Upon cooling to 6 K, the measured rates are suppressed by 7 orders of magnitude, 2 orders of magnitude below previously published data of similarly sized traps operated at room temperature. The observed noise depends strongly on the fabrication process, which suggests further improvements are possible.

4.
Opt Lett ; 32(5): 572-4, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17392925

RESUMO

Stable, narrow-linewidth optical sources are necessary in modern atomic physics. An appealing approach to achieving approximately 10 kHz frequency stability is optical feedback. We have designed a compact external cavity diode laser with optical feedback to a filter cavity mounted on a single baseplate and enclosed inside a vacuum sealed box. The design was implemented for three wavelengths addressing the 422 nm cooling, 1091 nm repumping, and 674 nm clock transition lines of Sr(+). We are able to cool a single, trapped strontium ion to approximately 2 mK and observe motional sidebands of the 5S(1/2) <--> 4D(5/2) transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA