RESUMO
BACKGROUND: The Colombian population, as well as those in other Latin American regions, arose from a recent tri-continental admixture among Native Americans, Spanish invaders, and enslaved Africans, all of whom passed through a population bottleneck due to widespread infectious diseases that left small isolated local settlements. As a result, the current population reflects multiple founder effects derived from diverse ancestries. METHODS: We characterized the role of admixture and founder effects on the origination of the mutational landscape that led to neurodegenerative disorders under these historical circumstances. Genomes from 900 Colombian individuals with Alzheimer's disease (AD) [n = 376], frontotemporal lobar degeneration-motor neuron disease continuum (FTLD-MND) [n = 197], early-onset dementia not otherwise specified (EOD) [n = 73], and healthy participants [n = 254] were analyzed. We examined their global and local ancestry proportions and screened this cohort for deleterious variants in disease-causing and risk-conferring genes. RESULTS: We identified 21 pathogenic variants in AD-FTLD related genes, and PSEN1 harbored the majority (11 pathogenic variants). Variants were identified from all three continental ancestries. TREM2 heterozygous and homozygous variants were the most common among AD risk genes (102 carriers), a point of interest because the disease risk conferred by these variants differed according to ancestry. Several gene variants that have a known association with MND in European populations had FTLD phenotypes on a Native American haplotype. Consistent with founder effects, identity by descent among carriers of the same variant was frequent. CONCLUSIONS: Colombian demography with multiple mini-bottlenecks probably enhanced the detection of founder events and left a proportionally higher frequency of rare variants derived from the ancestral populations. These findings demonstrate the role of genomically defined ancestry in phenotypic disease expression, a phenotypic range of different rare mutations in the same gene, and further emphasize the importance of inclusiveness in genetic studies.
Assuntos
Doença de Alzheimer , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Colômbia , Efeito Fundador , Degeneração Lobar Frontotemporal/genética , Humanos , Mutação , Doenças Neurodegenerativas/genéticaRESUMO
Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (LMNA). LMNA codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies. To determine PKC-α's involvement in muscular laminopathies, PKC-α's localization, activation, and interactions with the A-type lamins were examined in various cell types expressing pathogenic lamin A/C mutations. The results showed aberrant nuclear PKC-α cellular distribution in mutant cells compared to WT. PKC-α activation (phos-PKC-α) was decreased or unchanged in the studied cells expressing LMNA mutations, and the activation of its downstream targets, ERK 1/2, paralleled PKC-α activation alteration. Furthermore, the phos-PKC-α-lamin A/C proximity was altered. Overall, the data showed that PKC-α localization, activation, and proximity with lamin A/C were affected by certain pathogenic LMNA mutations, suggesting PKC-α involvement in striated muscle laminopathies.
Assuntos
Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminopatias/genética , Laminopatias/metabolismo , Proteína Quinase C-alfa/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Músculo Estriado/patologia , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação , Mioblastos/metabolismo , Ratos , Transdução de SinaisRESUMO
The assumption of additivity applied in the risk assessment of environmental mixtures containing carcinogenic polycyclic aromatic hydrocarbons (PAHs) was investigated using transcriptomics. MutaTMMouse were gavaged for 28 days with three doses of eight individual PAHs, two defined mixtures of PAHs, or coal tar, an environmentally ubiquitous complex mixture of PAHs. Microarrays were used to identify differentially expressed genes (DEGs) in lung tissue collected 3 days post-exposure. Cancer-related pathways perturbed by the individual or mixtures of PAHs were identified, and dose-response modeling of the DEGs was conducted to calculate gene/pathway benchmark doses (BMDs). Individual PAH-induced pathway perturbations (the median gene expression changes for all genes in a pathway relative to controls) and pathway BMDs were applied to models of additivity [i.e., concentration addition (CA), generalized concentration addition (GCA), and independent action (IA)] to generate predicted pathway-specific dose-response curves for each PAH mixture. The predicted and observed pathway dose-response curves were compared to assess the sensitivity of different additivity models. Transcriptomics-based additivity calculation showed that IA accurately predicted the pathway perturbations induced by all mixtures of PAHs. CA did not support the additivity assumption for the defined mixtures; however, GCA improved the CA predictions. Moreover, pathway BMDs derived for coal tar were comparable to BMDs derived from previously published coal tar-induced mouse lung tumor incidence data. These results suggest that in the absence of tumor incidence data, individual chemical-induced transcriptomics changes associated with cancer can be used to investigate the assumption of additivity and to predict the carcinogenic potential of a mixture.
Assuntos
Perfilação da Expressão Gênica/métodos , Modelos Biológicos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Misturas Complexas/toxicidade , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Masculino , Camundongos Transgênicos , Neoplasias/induzido quimicamente , Neoplasias/genética , Hidrocarbonetos Policíclicos Aromáticos/químicaRESUMO
BACKGROUND: A diverse class of engineered nanomaterials (ENMs) exhibiting a wide array of physical-chemical properties that are associated with toxicological effects in experimental animals is in commercial use. However, an integrated framework for human health risk assessment (HHRA) of ENMs has yet to be established. Rodent 2-year cancer bioassays, clinical chemistry, and histopathological endpoints are still considered the 'gold standard' for detecting substance-induced toxicity in animal models. However, the use of data derived from alternative toxicological tools, such as genome-wide expression profiling and in vitro high-throughput assays, are gaining acceptance by the regulatory community for hazard identification and for understanding the underlying mode-of-action. Here, we conducted a case study to evaluate the application of global gene expression data in deriving pathway-based points of departure (PODs) for multi-walled carbon nanotube (MWCNT)-induced lung fibrosis, a non-cancer endpoint of regulatory importance. METHODS: Gene expression profiles from the lungs of mice exposed to three individual MWCNTs with different physical-chemical properties were used within the framework of an adverse outcome pathway (AOP) for lung fibrosis to identify key biological events linking MWCNT exposure to lung fibrosis. Significantly perturbed pathways were categorized along the key events described in the AOP. Benchmark doses (BMDs) were calculated for each perturbed pathway and were used to derive transcriptional BMDs for each MWCNT. RESULTS: Similar biological pathways were perturbed by the different MWCNT types across the doses and post-exposure time points studied. The pathway BMD values showed a time-dependent trend, with lower BMDs for pathways perturbed at the earlier post-exposure time points (24 h, 3d). The transcriptional BMDs were compared to the apical BMDs derived by the National Institute for Occupational Safety and Health (NIOSH) using alveolar septal thickness and fibrotic lesions endpoints. We found that regardless of the type of MWCNT, the BMD values for pathways associated with fibrosis were 14.0-30.4 µg/mouse, which are comparable to the BMDs derived by NIOSH for MWCNT-induced lung fibrotic lesions (21.0-27.1 µg/mouse). CONCLUSIONS: The results demonstrate that transcriptomic data can be used to as an effective mechanism-based method to derive acceptable levels of exposure to nanomaterials in product development when epidemiological data are unavailable.
Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanotecnologia , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Toxicogenética , Animais , Benchmarking , Biologia Computacional , Bases de Dados Genéticas , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fibrose Pulmonar/patologia , Medição de Risco , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacosRESUMO
The use of short-term toxicogenomic tests to predict cancer (or other health effects) offers considerable advantages relative to traditional toxicity testing methods. The advantages include increased throughput, increased mechanistic data, and significantly reduced costs. However, precisely how toxicogenomics data can be used to support human health risk assessment (RA) is unclear. In a companion paper ( Moffat et al. 2014 ), we present a case study evaluating the utility of toxicogenomics in the RA of benzo[a]pyrene (BaP), a known human carcinogen. The case study is meant as a proof-of-principle exercise using a well-established mode of action (MOA) that impacts multiple tissues, which should provide a best case example. We found that toxicogenomics provided rich mechanistic data applicable to hazard identification, dose-response analysis, and quantitative RA of BaP. Based on this work, here we share some useful lessons for both research and RA, and outline our perspective on how toxicogenomics can benefit RA in the short- and long-term. Specifically, we focus on (1) obtaining biologically relevant data that are readily suitable for establishing an MOA for toxicants, (2) examining the human relevance of an MOA from animal testing, and (3) proposing appropriate quantitative values for RA. We describe our envisioned strategy on how toxicogenomics can become a tool in RA, especially when anchored to other short-term toxicity tests (apical endpoints) to increase confidence in the proposed MOA, and emphasize the need for additional studies on other MOAs to define the best practices in the application of toxicogenomics in RA.
Assuntos
Benzo(a)pireno/toxicidade , Medição de Risco/métodos , Toxicogenética/métodos , Animais , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga , Humanos , Neoplasias/induzido quimicamente , Testes de ToxicidadeRESUMO
Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.
Assuntos
Benzo(a)pireno/toxicidade , Medição de Risco/métodos , Toxicogenética/métodos , Animais , Carcinógenos/toxicidade , Água Potável/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Humanos , Camundongos , Especificidade da EspécieRESUMO
There is great interest in substituting animal work with in vitro experimentation in human health risk assessment; however, there are only few comparisons of in vitro and in vivo biological responses to engineered nanomaterials. We used high-content genomics tools to compare in vivo pulmonary responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT- XNRI -7 (Mitsui7) were characterized using DLS, SEM and TEM. Mice were exposed via a single intratracheal instillation to 18, 54, or 162 µg of Mitsui7/mouse. FE1 cells were incubated with 12.5, 25 and 100 µg/ml of Mitsui7. Tissue and cell samples were collected at 24 hours post-exposure. DNA microarrays were employed to establish mechanistic differences and similarities between the two models. Microarray results were confirmed using gene-specific RT-qPCR. Bronchoalveolar lavage (BAL) fluid was assessed for indications of inflammation in vivo. A strong dose-dependent activation of acute phase and inflammation response was observed in mouse lungs reflective mainly of an inflammatory response as observed in BAL. In vitro, a wide variety of core cellular functions were affected including transcription, cell cycle, and cellular growth and proliferation. Oxidative stress, fibrosis and inflammation processes were altered in both models. Although there were similarities observed between the two models at the pathway-level, the specific genes altered under these pathways were different, suggesting that the underlying mechanisms of responses are different in cells in culture and the lung tissue. Our results suggest that careful consideration should be given in selecting relevant endpoints when substituting animal with in vitro testing.
Assuntos
Células Epiteliais/metabolismo , Pulmão/metabolismo , Nanotubos de Carbono/toxicidade , Mucosa Respiratória/metabolismo , Transcriptoma , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Análise por Conglomerados , Exposição Ambiental , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inflamação/etiologia , Camundongos , Anotação de Sequência Molecular , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Reprodutibilidade dos Testes , Transdução de SinaisRESUMO
Forestomach tumors are observed in mice exposed to environmental carcinogens. However, the relevance of this data to humans is controversial because humans lack a forestomach. We hypothesize that an understanding of early molecular changes after exposure to a carcinogen in the forestomach will provide mode-of-action information to evaluate the applicability of forestomach cancers to human cancer risk assessment. In the present study we exposed mice to benzo(a)pyrene (BaP), an environmental carcinogen commonly associated with tumors of the rodent forestomach. Toxicogenomic tools were used to profile gene expression response in the forestomach. Adult Muta™Mouse males were orally exposed to 25, 50, and 75 mgBaP/kg-body-weight/day for 28 consecutive days. The forestomach was collected three days post-exposure. DNA microarrays, real-time RT-qPCR arrays, and protein analyses were employed to characterize responses in the forestomach. Microarray results showed altered expression of 414 genes across all treatment groups (± 1.5 fold; false discovery rate adjusted P ≤ 0.05). Significant downregulation of genes associated with phase II xenobiotic metabolism and increased expression of genes implicated in antigen processing and presentation, immune response, chemotaxis, and keratinocyte differentiation were observed in treated groups in a dose-dependent manner. A systematic comparison of the differentially expressed genes in the forestomach from the present study to differentially expressed genes identified in human diseases including human gastrointestinal tract cancers using the NextBio Human Disease Atlas showed significant commonalities between the two models. Our results provide molecular evidence supporting the use of the mouse forestomach model to evaluate chemically-induced gastrointestinal carcinogenesis in humans.
Assuntos
Benzo(a)pireno/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/genética , Animais , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Valor Preditivo dos Testes , Fatores de Risco , ToxicogenéticaRESUMO
A-type lamins A and C are nuclear intermediate filament proteins in which mutations have been implicated in multiple disease phenotypes commonly known as laminopathies. A few studies have implicated sumoylation in the regulation of A-type lamins. Sumoylation is a post-translational protein modification that regulates a wide range of cellular processes through the attachment of small ubiquitin-related modifier (sumo) to various substrates. Here we showed that laminopathy mutants result in the mislocalization of sumo1 both in vitro (C2C12 cells overexpressing mutant lamins A and C) and in vivo (primary myoblasts and myopathic muscle tissue from the Lmna(H222P/H222P) mouse model). In C2C12 cells, we showed that the trapping of sumo1 in p.Asp192Gly, p.Gln353Lys, and p.Arg386Lys aggregates of lamin A/C correlated with an increased steady-state level of sumoylation. However, lamin A and C did not appear to be modified by sumo1. Our results suggest that mutant lamin A/C alters the dynamics of sumo1 and thus misregulation of sumoylation may be contributing to disease progression in laminopathies.
Assuntos
Lamina Tipo A/genética , Mutação de Sentido Incorreto , Processamento de Proteína Pós-Traducional , Proteína SUMO-1/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Expressão Gênica , Lamina Tipo A/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Sumoilação , Enzimas de Conjugação de Ubiquitina/metabolismoRESUMO
We have previously shown that acute oral exposure to the environmental carcinogen benzo(a)pyrene (BaP) elicits comparable levels of DNA adducts, but distinct transcriptomic changes, in mouse lungs and livers, the two main BaP bioactivating organs. Oral BaP exposure is predominantly associated with lung cancer and not hepatic cancer in some animal models, suggesting that gene expression differences may provide insight into the drivers of tissue-specific carcinogenesis. In the present study, we examine pulmonary DNA adduct formation, lacZ mutant frequency, and mRNA profiles in adult male MutaMouse following subchronic (28 day) oral exposure to BaP (0, 25, 50, and 75 mg/kg/day) and sacrificed 3 days postexposure. The results are compared with those obtained from livers of the same mice (previously published). Although there was a 1.8- to 3.3-fold increase in the levels of DNA adducts in lung compared with liver, the lacZ transgene mutant frequency was similar in both tissues. At the transcriptomic level, a transition from activation of the DNA damage response p53 pathway at the low dose to the induction of genes involved in angiogenesis, evasion of apoptosis and growth signals at the high doses was evident only in the lungs. These results suggest that tissue DNA adducts and mutant frequency are sensitive markers of target tissue exposure and mode of action, whereas early changes in gene expression may provide a better indication of the likelihood of carcinogenic transformation in selected tissues. Moreover, the study provides new information on the underlying mechanisms that contribute to tissue-specific responses to BaP.
Assuntos
Benzo(a)pireno/toxicidade , Transformação Celular Neoplásica , Pulmão/efeitos dos fármacos , Transcriptoma , Administração Oral , Animais , Benzo(a)pireno/administração & dosagem , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND AND OBJECTIVE: Lamin A/C (LMNA) gene mutations cause dilated cardiomyopathy, often accompanied by conduction disturbances. Our aim was to search for LMNA mutations in individuals with atrial fibrillation. METHODS: A cohort of Polish subjects (N = 103) with non-valvular atrial fibrillation with a high (48.5%) prevalence of conduction system disturbances was screened for LMNA variants by direct DNA sequencing. RESULTS: We found a single non-synonymous variant (Thr528Met) in a 72-year-old patient with normal left ventricular function and episodes of advanced atrioventricular block. One of his two mutation-carrying daughters had episodes of type I second-degree atrioventricular block on a 24-hour Holter ECG and peak exercise arrhythmia. Interpretation of cardiac anomalies observed in the other daughter was complicated by thyroid insufficiency. A Thr528Met weak pathogenic effect was supported by transient transfections of C2C12 mouse myoblasts and computationally. Another interesting variant was Ile26Ile (c.78C>T), found in a New York Heart Association class III patient with a depressed left ventricular ejection fraction (30%), left bundle branch block, and a family history of heart disease. Ile26Ile was absent in 246 healthy individuals and was computationally predicted to interfere with splicing. CONCLUSION: LMNA mutations are not a frequent cause of atrial fibrillation even when conduction disease is present. Unlike the majority of LMNA mutations clearly associated with a severe clinical phenotype and a poor prognosis, Thr528Met results in a more subtle pathogenic effect, while Ile26Ile should be considered as a variant of unknown significance.
Assuntos
Substituição de Aminoácidos , Fibrilação Atrial/genética , Variação Genética , Lamina Tipo A/genética , Mutação , Idoso , Sequência de Aminoácidos , Fibrilação Atrial/diagnóstico , Sequência de Bases , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Alinhamento de SequênciaRESUMO
Mutations in the lamin A/C gene (LMNA) are established causes of familial dilated cardiomyopathy (DCM) with atrio-ventricular block although relatively little is known about genotype-phenotype correlations. We describe a 23-year-old patient who presented with inferolateral wall thinning and akinesis with evidence of mid-myocardial fibrosis on cardiac magnetic resonance. Molecular analysis driven by clinical similarities with a previously described case harboring the p.R541C LMNA mutation revealed a novel c.1621 C > G, p.R541G substitution whose pathogenicity was confirmed by transfection of mouse myoblasts. Our results emphasize the role of LMNA mutations at position R541 in DCM cases with segmental LV wall motion akinesis/dyskinesis.
Assuntos
Discinesias/genética , Lamina Tipo A/genética , Parede Torácica/anormalidades , Substituição de Aminoácidos/genética , Arginina/genética , Cardiomiopatia Dilatada/genética , Família , Estudos de Associação Genética , Glicina/genética , Humanos , Masculino , Mutação/fisiologia , Linhagem , Polimorfismo de Nucleotídeo Único , Adulto JovemRESUMO
Major nuclear envelope abnormalities, such as disruption and/or presence of intranuclear organelles, have rarely been described in cardiomyocytes from dilated cardiomyopathy (DCM) patients. In this study, we screened a series of 25 unrelated DCM patient samples for (a) cardiomyocyte nuclear abnormalities and (b) mutations in LMNA and TMPO as they are two DCM-causing genes that encode proteins involved in maintaining nuclear envelope architecture. Among the 25 heart samples investigated, we identified major cardiomyocyte nuclear abnormalities in 8 patients. Direct sequencing allowed the detection of three heterozygous LMNA mutations (p.D192G, p.Q353K and p.R541S) in three patients. By multiplex ligation-dependant probe amplification (MLPA)/quantitative real-time PCR, we found a heterozygous deletion encompassing exons 3-12 of the LMNA gene in one patient. Immunostaining demonstrated that this deletion led to a decrease in lamin A/C expression in cardiomyocytes from this patient. This LMNA deletion as well as the p.D192G mutation was found in patients displaying major cardiomyocyte nuclear envelope abnormalities, while the p.Q353K and p.R541S mutations were found in patients without specific nuclear envelope abnormalities. None of the DCM patients included in the study carried a mutation in the TMPO gene. Taken together, we found no evidence of a genotype-phenotype relationship between the onset and the severity of DCM, the presence of nuclear abnormalities and the presence or absence of LMNA mutations. We demonstrated that a large deletion in LMNA associated with reduced levels of the protein in the nuclear envelope suggesting a haploinsufficiency mechanism can lead to cardiomyocyte nuclear envelope disruption and thus underlie the pathogenesis of DCM.
Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Deleção de Genes , Lamina Tipo A/genética , Miócitos Cardíacos/ultraestrutura , Membrana Nuclear/ultraestrutura , Adolescente , Adulto , Cardiomiopatia Dilatada/fisiopatologia , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Feminino , Testes Genéticos , Genótipo , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Fenótipo , Adulto JovemRESUMO
Mutations in the lamin A/C gene are involved in multiple human disorders for which the pathophysiological mechanisms are partially understood. Conflicting results prevail regarding the organization of lamin A and C mutants within the nuclear envelope (NE) and on the interactions of each lamin to its counterpart. We over-expressed various lamin A and C mutants both independently and together in COS7 cells. When expressed alone, lamin A with cardiac/muscular disorder mutations forms abnormal aggregates inside the NE and not inside the nucleoplasm. Conversely, the equivalent lamin C organizes as intranucleoplasmic aggregates that never connect to the NE as opposed to wild type lamin C. Interestingly, the lamin C molecules present within these aggregates exhibit an abnormal increased mobility. When co-expressed, the complex formed by lamin A/C aggregates in the NE. Lamin A and C mutants for lipodystrophy behave similarly to the wild type. These findings reveal that lamins A and C may be differentially affected depending on the mutation. This results in multiple possible physiological consequences which likely contribute in the phenotypic variability of laminopathies. The inability of lamin C mutants to join the nuclear rim in the absence of lamin A is a potential pathophysiological mechanism for laminopathies.