Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 105(2): 235-43, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20389308

RESUMO

To investigate the genetic architecture of distyly in Turnera subulata and test the hypothesis that a supergene determines distyly, we used X-ray mutagenesis to generate floral mutants. Based upon the crossing design, all progeny were expected to be short-styled. Of 3982 progeny screened, 10 long-styled mutants, one long homostyle and one short homostyle were recovered. Assays for molecular markers tightly linked to the S-locus showed that the mutants were missing 1-3 markers indicating they are deletion mutants. We investigated the incompatibility phenotype of the mutants and found that both their styles and pollen behaved like those of the long-styled morph. There was a variation in the absolute length of styles, stamens and pollen size of the long-styled mutants. Furthermore, long-styled mutants possessing larger deletions tended to have their anthers and stigmas in closer proximity. We explored the inheritance of the S-locus mutations and found that only one of the deletion mutations was transmitted to progeny where we recovered seven such progeny. Remarkably, our data are consistent with the supergene model (GPA/gpa) of Primula. The long homostyle mutant appears to have deletions involving both the G and P loci. The other mutants appear to have deletions of the entire S-locus. The mutants generated will serve as a valuable resource for the molecular dissection of the S-locus region, and in the identification of genes determining distyly.


Assuntos
Deleção de Genes , Deleção de Sequência/efeitos da radiação , Turnera/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Loci Gênicos , Mutagênese/efeitos da radiação , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/efeitos da radiação , Turnera/crescimento & desenvolvimento , Turnera/efeitos da radiação , Raios X
2.
Genome ; 51(7): 471-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18545271

RESUMO

As a prelude to discovery of genes involved in floral dimorphism and incompatibility, a genetic map of distylous Turnera was constructed along with a fine-scale map of the S-locus region. The genetic map consists of 79 PCR-based molecular markers (48 AFLP, 18 RAPD, 9 ISSR, 4 RAMP), 5 isozyme loci, one additional gene, and the S-locus, spanning a total distance of 683.3 cM. The 86 markers are distributed in 5 linkage groups, corresponding to the haploid chromosome number. Molecular markers tightly linked or co-segregating with the S-locus in an initial mapping population of 94 individuals were used to assay an additional 642 progeny to construct a map of the S-locus region. The fine-scale map consists of 2 markers (IS864a and RP45E9) flanking the S-locus at distances of 0.41 and 0.54 cM, respectively, and 3 additional markers (OPK14c, RP45G18, and RP81E18) co-segregating with the S-locus in the total mapping population of 736 individuals. The genetic map constructed will serve as a framework for localization of genes outside the S-locus affecting distyly, while molecular markers of the fine-scale map will be used to initiate chromosome walking to find the genes residing at the S-locus.


Assuntos
Mapeamento Cromossômico , Polimorfismo Genético , Turnera/genética , Flores/genética , Ligação Genética , Marcadores Genéticos
3.
Heredity (Edinb) ; 98(6): 411-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17375125

RESUMO

To explore the rate of recombination resulting from male vs female meiosis, crosses were performed using distylous Turnera subulata as well as a cross involving the introgression of genes from T. krapovickasii into T. subulata. We assayed four loci on the chromosome bearing the S-locus as well as two loci on each of two other linkage groups. Substantial and consistent dimorphism in recombination rates was found with female meiosis resulting in as much as a approximately 6-fold increase relative to male. Aberrant single locus segregation ratios occurred for some loci, particularly when the male (pollen) parent was heterozygous and the cross involved introgressed genes. The extreme trend of greater recombination resulting from female meiosis was, however, maintained in crosses where no aberrant ratios occurred, indicating that the sex dimorphism in recombination is not the result of aberrant segregation. We also exploited this distylous species and tested whether there is recombination suppression around the S-locus because of an inversion or other chromosome rearrangement(s). We found no significant evidence for recombination suppression.


Assuntos
Genes de Plantas , Meiose/genética , Recombinação Genética , Caracteres Sexuais , Turnera/genética , Cruzamentos Genéticos , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA