Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 40(45): 6489-6498, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36195474

RESUMO

The rapid spread of COVID-19 on all continents and the mortality induced by SARS-CoV-2 virus, the cause of the pandemic coronavirus disease 2019 (COVID-19) has motivated an unprecedented effort for vaccine development. Inactivated viruses as well as vaccines focused on the partial or total sequence of the Spike protein using different novel platforms such us RNA, DNA, proteins, and non-replicating viral vectors have been developed. The high global need for vaccines, now and in the future, and the emergence of new variants of concern still requires development of accessible vaccines that can be adapted according to the most prevalent variants in the respective regions. Here, we describe the immunogenic properties of a group of theoretically predicted RBD peptides to be used as the first step towards the development of an effective, safe and low-cost epitope-focused vaccine. One of the tested peptides named P5, proved to be safe and immunogenic. Subcutaneous administration of the peptide, formulated with alumina, induced high levels of specific IgG antibodies in mice and hamsters, as well as an increase of IFN-γ expression by CD8+ T cells in C57 and BALB/c mice upon in vitro stimulation with P5. Neutralizing titers of anti-P5 antibodies, however, were disappointingly low, a deficiency that we will attempt to resolve by the inclusion of additional immunogenic epitopes to P5. The safety and immunogenicity data reported in this study support the use of this peptide as a starting point for the design of an epitope restricted vaccine.


Assuntos
COVID-19 , Vacinas Virais , Cricetinae , Humanos , Camundongos , Animais , SARS-CoV-2 , Epitopos , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunoglobulina G , Peptídeos , RNA , Óxido de Alumínio , Anticorpos Neutralizantes
2.
Mol Biochem Parasitol ; 251: 111496, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35830923

RESUMO

Racemose neurocysticercosis is an aggressive infection caused by the aberrant expansion and proliferation of the bladder wall of the Taenia solium cyst within the subarachnoid spaces of the human brain. The parasite develops and proliferates in a microenvironment with low concentrations of growth factors and micronutrients compared to serum. Iron is important for essential biological processes, but its requirement for racemose cyst viability and proliferation has not been studied. The presence of iron in the bladder wall of racemose and normal univesicular T. solium cysts was determined using Prussian blue staining. Iron deposits were readily detected in the bladder wall of racemose cysts but were not detectable in the bladder wall of univesicular cysts. Consistent with this finding, the genes for two iron-binding proteins (ferritin and melanotransferrin) and ribonucleotide reductase were markedly overexpressed in the racemose cyst compared to univesicular cysts. The presence of iron in the bladder wall of racemose cysts may be due to its increased metabolic rate due to proliferation.


Assuntos
Cistos , Neurocisticercose , Taenia solium , Taenia , Animais , Humanos , Ferro , Neurocisticercose/parasitologia , Taenia solium/genética , Microambiente Tumoral , Bexiga Urinária
3.
Front Cell Infect Microbiol ; 12: 876839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619649

RESUMO

Human cysticercosis by Taenia solium is the major cause of neurological illness in countries of Africa, Southeast Asia, and the Americas. Publication of four cestode genomes (T. solium, Echinococcus multilocularis, E. granulosus and Hymenolepis microstoma) in the last decade, marked the advent of novel approaches on the study of the host-parasite molecular crosstalk for cestode parasites of importance for human and animal health. Taenia crassiceps is another cestode parasite, closely related to T. solium, which has been used in numerous studies as an animal model for human cysticercosis. Therefore, characterization of the T. crassiceps genome will also contribute to the understanding of the human infection. Here, we report the genome of T. crassiceps WFU strain, reconstructed to a noncontiguous finished resolution and performed a genomic and differential expression comparison analysis against ORF strain. Both strain genomes were sequenced using Oxford Nanopore (MinION) and Illumina technologies, achieving high quality assemblies of about 107 Mb for both strains. Dotplot comparison between WFU and ORF demonstrated that both genomes were extremely similar. Additionally, karyotyping results for both strains failed to demonstrate a difference in chromosome composition. Therefore, our results strongly support the concept that the absence of scolex in the ORF strain of T. crassiceps was not the result of a chromosomal loss as proposed elsewhere. Instead, it appears to be the result of subtle and extensive differences in the regulation of gene expression. Analysis of variants between the two strains identified 2,487 sites with changes distributed in 31 of 65 scaffolds. The differential expression analysis revealed that genes related to development and morphogenesis in the ORF strain might be involved in the lack of scolex formation.


Assuntos
Cisticercose , Taenia solium , África , Animais , Cisticercose/veterinária , Modelos Animais de Doenças , Genômica , Humanos , Taenia solium/genética
4.
Acta Trop ; 225: 106197, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34688628

RESUMO

A gene silencing procedure on cysticerci of the taeniid cestode Taenia crassiceps is described. This is the first time this technique is reported in this species that is widely used as an animal model for human cysticercosis. Genome database searches were performed in order to find out if relevant genes involved in gene silencing and non-coding RNA processing, Argonaute and Dicer (AGO and Dcr) are present in T. crassiceps. We found three AGO and two Dcr orthologues that were designed TcAGO1, Tc2 and Tc3, as well as TcDcr1 and TcDcr2. In order to elucidate the evolutionary relationships of T. crassiceps TcAGO and TcDcr genes, separate phylogenetic analyses were carried out for each, including AGO and Dcr orthologues of other 20 platyhelminthes. Our findings showed a close phylogenetic relationship of TcAGO and TcDcr with those previously described for Echinococcus spp. Our RT-PCR studies demonstrated expression of all TcAGO and TcDcr orthologues. Our results show that the gene silencing machinery in T. crassiceps is functionally active by inducing silencing of TcEnoA (∼90%). These results clearly show that gene silencing using siRNAs can be used as a molecular methodology to study gene function in taeniid cestodes.


Assuntos
Cisticercose , Taenia , Animais , Cysticercus , Humanos , Fosfopiruvato Hidratase , Filogenia , RNA Interferente Pequeno/genética , Taenia/genética
5.
ACS Omega ; 6(44): 29882-29892, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778661

RESUMO

Halloysite clay nanotubes (HNTs) have been proposed as highly biocompatible for several biomedical applications. Various polymers have been used to functionalize HNTs, but scarce information exists about polystyrene for this purpose. This work evaluated polystyrene-functionalized HNTs (FHNTs) by comparing its effects with non-FHNTs and innocuous talc powder on in vitro and in vivo models. Monocyte-derived human or murine macrophages and the RAW 264.7 cell line were treated with 0.01, 0.1, 1, and 100 µg mL-1 FHNTs, HNTs, or talc to evaluate the cytotoxic and cytokine response. Our results show that nanoclays did not cause cytotoxic damage to macrophages. Only the 100 µg mL-1 concentration induced slight proinflammatory cytokine production at short exposure, followed by an anti-inflammatory response that increases over time. CD1 mice treated with a single dose of 1, 2.5, or 5 mg Kg-1 of FHNTs or HNTs by oral and inhalation routes caused aluminum accumulation in the kidneys and lungs, without bodily signs of distress or histopathological changes in any treated mice, evaluated at 48 h and 30 days post-treatment. Nanoclay administration simultaneously by four different parenteral routes (20 mg Kg-1) or the combination of administration routes (parenteral + oral or parenteral + inhalation; 25 mg Kg-1) showed accumulation on the injection site and slight surrounding inflammation 30 days post-treatment. CD1 mice chronically exposed to HNTs or FHNTs in the bedding material (ca 1 mg) throughout the parental generation and two successive inbred generations for 8 months did not cause any inflammatory process or damage to the abdominal organs and the reproductive system of the mice of any of the generations, did not affect the number of newborn mice and their survival, and did not induce congenital malformations in the offspring. FHNTs showed a slightly less effect than HNTs in all experiments, suggesting that functionalization makes them less cytotoxic. Doses of up to 25 mg Kg-1 by different administration routes and permanent exposure to 1 mg of HNTs or FHNTs for 8 months seem safe for CD1 mice. Our in vivo and in vitro results indicate that nanoclays are highly biocompatible, supporting their possible safe use for future biomedical and general-purpose applications.

6.
Antioxidants (Basel) ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34206992

RESUMO

NETosis is a neutrophil process involving sequential steps from pathogen detection to the release of DNA harboring antimicrobial proteins, including the central generation of NADPH oxidase dependent or independent ROS. Previously, we reported that NETosis triggered by Entamoeba histolytica trophozoites is independent of NADPH oxidase activity in neutrophils, but dependent on the viability of the parasites and no ROS source was identified. Here, we explored the possibility that E. histolytica trophozoites serve as the ROS source for NETosis. NET quantitation was performed using SYTOX® Green assay in the presence of selective inhibitors and scavengers. We observed that respiratory burst in neutrophils was inhibited by trophozoites in a dose dependent manner. Mitochondrial ROS was not also necessary, as the mitochondrial scavenger mitoTEMPO did not affect the process. Surprisingly, ROS-deficient amoebas obtained by pre-treatment with pyrocatechol were less likely to induce NETs. Additionally, we detected the presence of MPO on the cell surface of trophozoites after the interaction with neutrophils and found that luminol and isoluminol, intracellular and extracellular scavengers for MPO derived ROS reduced the amount of NET triggered by amoebas. These data suggest that ROS generated by trophozoites and processed by the extracellular MPO during the contact with neutrophils are required for E. histolytica induced NETosis.

7.
Sci Rep ; 11(1): 13848, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226571

RESUMO

Metagenomic and traditional paleolimnological approaches are suitable to infer past biological and environmental changes, however, they are often applied independently, especially in tropical regions. We combined both approaches to investigate Holocene Prokaryote and Eukaryote diversity and microbial metabolic pathways in ancient Lake Chalco, Mexico. Here, we report on diversity among a large number of lineages (36,722 OTUs) and functional diversity (27,636,243 non-clustered predicted proteins, and 6,144 annotated protein-family genes). The most abundant domain is Bacteria (81%), followed by Archaea (15%) and Eukarya (3%). We also determined the diversity of protein families and their relationship to metabolic pathways. The early Holocene (> 11,000 cal years BP) lake was characterized by cool, freshwater conditions, which later became warmer and hyposaline (11,000-6,000 cal years BP). We found high abundances of cyanobacteria, and fungi groups associated with mature forests in these sediments. Bacteria and Archaea include mainly anaerobes and extremophiles that are involved in the sulfur, nitrogen, and carbon cycles. We found evidence for early human impacts, including landscape modifications and lake eutrophication, which began ~ 6,000 cal years BP. Subsaline, temperate conditions were inferred for the past 5,000 years. Finally, we found nitrogen-fixing bacteria and protein-family genes that are linked to contaminated environments, as well as several fungal pathogens of crops in near-surface sediments.


Assuntos
Archaea/genética , Bactérias/genética , Lagos/microbiologia , Microbiota/genética , Ciclo do Carbono/genética , Sedimentos Geológicos/microbiologia , Humanos , Metagenoma/genética , México , Nitrogênio/metabolismo , Filogenia , Clima Tropical
8.
PLoS Negl Trop Dis ; 15(3): e0009303, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33750965

RESUMO

Racemose neurocysticercosis is an aggressive disease caused by the aberrant expansion of the cyst form of Taenia solium within the subarachnoid spaces of the human brain and spinal cord resulting in a mass effect and chronic inflammation. Although expansion is likely caused by the proliferation and growth of the parasite bladder wall, there is little direct evidence of the mechanisms that underlie these processes. Since the development and growth of cysts in related cestodes involves totipotential germinative cells, we hypothesized that the expansive growth of the racemose larvae is organized and maintained by germinative cells. Here, we identified proliferative cells expressing the serine/threonine-protein kinase plk1 by in situ hybridization. Proliferative cells were present within the bladder wall of racemose form and absent from the homologous tissue surrounding the vesicular form. Cyst proliferation in the related model species Taenia crassiceps (ORF strain) occurs normally by budding from the cyst bladder wall and proliferative cells were concentrated within the growth buds. Cells isolated from bladder wall of racemose larvae were established in primary cell culture and insulin stimulated their proliferation in a dose-dependent manner. These findings indicate that the growth of racemose larvae is likely due to abnormal cell proliferation. The different distribution of proliferative cells in the racemose larvae and their sensitivity to insulin may reflect significant changes at the cellular and molecular levels involved in their tumor-like growth. Parasite cell cultures offer a powerful tool to characterize the nature and formation of the racemose form, understand the developmental biology of T. solium, and to identify new effective drugs for treatment.


Assuntos
Antígenos de Helmintos/análise , Proliferação de Células/fisiologia , Neurocisticercose/parasitologia , Taenia solium/embriologia , Taenia solium/crescimento & desenvolvimento , Animais , Encéfalo/parasitologia , Encéfalo/patologia , Técnicas de Cultura de Células , Humanos , Larva/citologia
9.
Cytokine ; 133: 155121, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32417648

RESUMO

Human macrophage migration inhibition factor (MIF) is a protein with cytokine and chemokine properties that regulates a diverse range of physiological functions related to innate immunity and inflammation. Most research has focused on the role of MIF in different inflammatory diseases. D-dopachrome tautomerase (DDT), a different molecule with structural similarities to MIF, which shares receptors and biological functions, has recently been reported, but little is known about its roles and mechanisms. In this review, we sought to understand the similarities and differences between these molecules by summarizing what is known about their different structures, receptors and mechanisms regulating their expression and biological activities with an emphasis on immunological aspects.


Assuntos
Fatores Imunológicos/imunologia , Imunomodulação/imunologia , Oxirredutases Intramoleculares/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Animais , Humanos
10.
Theor Biol Med Model ; 16(1): 4, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30803437

RESUMO

BACKGROUND: The application of effective vaccines against pig cysticercosis and mass chemotherapy against pig cysticercosis and human taeniasis have shown the feasibility of interrupting the parasite's life cycle in endemic areas. METHODS: A mathematical model that divides the population into susceptible, infected, and vaccinated individuals is formulated. The model is based upon the life cycle of the parasite. Computer numerical simulation experiments to evaluate the impact of pig vaccination under different vaccination schedules, and combined intervention strategies including pig vaccination and anthelmintic treatment against human taeniasis are carried out. RESULTS: Vaccination against either pig cysticercosis or against human taeniasis will influence the transmission dynamics not only among vaccinees but also the dynamics of the other hosts as well. When the protective efficacy and/or the coverage rate is less than 100%, different mass interventions like vaccinating the pig population twice in combination with chemotherapeutic treatment against human taeniasis, the elimination of the infection in both pigs and humans can also be achieved. CONCLUSIONS: Our mathematical model has the potential for planning, and designing effective intervention strategies including both mass vaccination and/or chemotherapeutic treatment to eliminate pig cysticercosis, human taeniasis and human neurocysticercosis. The model can be adapted to any given community with mild, moderate endemicity, or even in hyperendemic regions.


Assuntos
Cisticercose/prevenção & controle , Modelos Teóricos , Teníase/prevenção & controle , Vacinação/métodos , Vacinas/administração & dosagem , Animais , Cisticercose/transmissão , Tratamento Farmacológico/métodos , Humanos , Suínos , Teníase/transmissão
11.
Biosci Rep ; 39(1)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30429239

RESUMO

Amoebiasis caused by the protozoan parasite Entamoeba histolytica remains a public health problem in developing countries, making the identification of new anti-amoebic compounds a continuing priority. Previously, we have shown that lactoferrin (Lf) and several Lf-derived peptides exhibit in vitro anti-amoebic activity independently of their iron-binding activity. Here, we evaluated the amoebicidal effect of synthetic Lf-derived peptides Lfcin-B, Lfcin 17-30, and Lfampin, analyzed the mechanism of death induced by the peptides and determined their therapeutic effects on murine intestinal amoebiasis. MTT assays in trophozoite cultures of E. histolytica exposed to each peptide (1-1000 µM) showed that Lfampin is far more amoebicidal than Lfcins. Lfampin killed 80% of trophozoites at doses higher than 100 µM in 24 h, and FACs analysis using Annexin V/propidium iodide showed that death occurred mainly by necrosis. In contrast, Lfcin-B and Lfcin 17-30 appeared to have no significant effect on amoebic viability. FACs and confocal microscopy analysis using FITC-labeled peptides showed that all three peptides are internalized by the amoeba mainly using receptor (PI3K signaling) and actin-dependent pathways but independent of clathrin. Docking studies identified cholesterol in the amoeba's plasma membrane as a possible target of Lfampin. Oral treatment of intracecally infected mice with the abovementioned peptides at 10 mg/kg for 4 days showed that Lfampin resolved 100% of the cases of intestinal amoebiasis, whereas Lfcin 17-30 and Lfcin-B were effective in resolving infection in 80 and 70% of cases, respectively. These data show that although synthetic bovine Lf-derived peptides exhibit varying amoebicidal potentials in vitro, they do resolve murine intestinal amoebiasis efficiently, suggesting that they may be useful as a therapeutic treatment.


Assuntos
Antiprotozoários/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Entamebíase/tratamento farmacológico , Lactoferrina/farmacologia , Necrose/tratamento farmacológico , Peptídeos/farmacologia , Trofozoítos/efeitos dos fármacos , Animais , Bovinos , Entamebíase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Fosfatidilinositol 3-Quinases/metabolismo
12.
Biosci Rep ; 38(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30166455

RESUMO

Pathogens have developed particular strategies to infect and invade their hosts. Amongst these strategies' figures the modulation of several components of the innate immune system participating in early host defenses, such as the coagulation and complement cascades, as well as the fibrinolytic system. The components of the coagulation cascade and the fibrinolytic system have been proposed to be interfered during host invasion and tissue migration of bacteria, fungi, protozoa, and more recently, helminths. One of the components that has been proposed to facilitate pathogen migration is plasminogen (Plg), a protein found in the host's plasma, which is activated into plasmin (Plm), a serine protease that degrades fibrin networks and promotes degradation of extracellular matrix (ECM), aiding maintenance of homeostasis. However, pathogens possess Plg-binding proteins that can activate it, therefore taking advantage of the fibrin degradation to facilitate establishment in their hosts. Emergence of Plg-binding proteins appears to have occurred in diverse infectious agents along evolutionary history of host-pathogen relationships. The goal of the present review is to list, summarize, and analyze different examples of Plg-binding proteins used by infectious agents to invade and establish in their hosts. Emphasis was placed on mechanisms used by helminth parasites, particularly taeniid cestodes, where enolase has been identified as a major Plg-binding and activating protein. A new picture is starting to arise about how this glycolytic enzyme could acquire an entirely new role as modulator of the innate immune system in the context of the host-parasite relationship.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Doenças Transmissíveis/genética , Plasminogênio/genética , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/patologia , Matriz Extracelular/química , Matriz Extracelular/genética , Fibrina/genética , Fibrinolisina/genética , Fibrinólise/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Evasão da Resposta Imune/genética , Imunidade Inata/genética , Proteólise
13.
Biosci Rep ; 38(4)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29921579

RESUMO

During the study of host-parasite relationships in taeniid parasite diseases, including cysticercosis and hydatidosis, reports have described the presence of host proteins in the cyst fluid and tissue of metacestodes. However, the fate or role of host elements inside the parasite remains barely explored. After the publication of genomes of four cestode species, it became clear that these organisms possess a limited biosynthetic capability. The initial goal of the present study was to determine if uptaken host proteins could be a source of essential amino acids for cysticerci. To track the utilization of uptaken proteins, we added metabolically labeled IgG-3H and GFP-3H to the culture medium of Taenia crassiceps cysticerci. Incorporation of labeled amino acid was evaluated by fluorography in cysticerci extracts. Our results showed that the use of uptaken proteins by cysticerci as a source of amino acids appeared negligible. Exploring alternative fates for the host proteins, proteomic analysis of the protein matrix in calcareous corpuscles was carried out. Since T. crassiceps does not contain calcareous corpuscles, proteomic analyses were performed in corpuscles of Taenia solium cysticerci. Our results demonstrated that host proteins represented approximately 70% of protein content in the calcareous corpuscles. The presence of the two major uptaken host proteins, namely albumin and IgG, was also demonstrated by Western blot in the matrix of corpuscles. Our findings strongly suggested that the uptake and disposal of host proteins involve calcareous corpuscles, expanding the physiological role of these mineral concretions to a far more important level than previously proposed.


Assuntos
Cisticercose/metabolismo , Cysticercus/fisiologia , Interações Hospedeiro-Parasita , Imunoglobulina G/metabolismo , Taenia solium/fisiologia , Teníase/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
14.
Artigo em Inglês | MEDLINE | ID: mdl-29922599

RESUMO

Neutrophil extracellular traps (NETs) are DNA fibers decorated with histones and antimicrobial proteins from cytoplasmic granules released into the extracellular space in a process denominated NETosis. The molecular pathways involved in NETosis have not been completely understood. Classical NETosis mechanisms involve the neutrophil elastase (NE) translocation to nucleus due to the generation of reactive oxygen species (ROS) by NADPH oxidase (NOX2) or the peptidyl arginine deiminase 4 (PAD4) activation in response to an increase in extracellular calcium influx; both mechanisms result in DNA decondensation. Previously, we reported that trophozoites and lipopeptidophosphoglycan from Entamoeba histolytica trigger NET release in human neutrophils. Here, we demonstrated in a quantitative manner that NETs were rapidly form upon treatment with amoebic trophozoites and involved both nuclear and mitochondrial DNA (mtDNA). NETs formation depended on amoeba viability as heat-inactivated or paraformaldehyde-fixed amoebas were not able to induce NETs. Interestingly, ROS were not detected in neutrophils during their interaction with amoebas, which could explain why NOX2 inhibition using apocynin did not affect this NETosis. Surprisingly, whereas calcium chelation reduced NET release induced by amoebas, PAD4 inhibition by GSK484 failed to block DNA extrusion but, as expected, abolished NETosis induced by the calcium ionophore A23187. Additionally, NE translocation to the nucleus and serine-protease activity were necessary for NET release caused by amoeba. These data support the idea that E. histolytica trophozoites trigger NETosis by a rapid non-classical mechanism and that different mechanisms of NETs release exist depending on the stimuli used.


Assuntos
Entamoeba histolytica/metabolismo , Entamebíase/metabolismo , Armadilhas Extracelulares/metabolismo , NADPH Oxidases/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trofozoítos/metabolismo , Acetofenonas/antagonistas & inibidores , Apoptose , Cálcio/metabolismo , DNA/efeitos dos fármacos , DNA/metabolismo , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Entamebíase/parasitologia , Armadilhas Extracelulares/parasitologia , Humanos , Elastase de Leucócito/metabolismo , Viabilidade Microbiana , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADPH Oxidases/efeitos dos fármacos , Necrose , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Oxirredução/efeitos dos fármacos , Peptidoglicano/metabolismo , Fosfolipídeos/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Inibidores de Serina Proteinase/metabolismo , Trofozoítos/genética
15.
Acta Trop ; 182: 69-79, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29466706

RESUMO

The larval stage of Taenia solium (cysticerci) is the causal agent of human and swine cysticercosis. When ingested by the host, T. solium eggs are activated and hatch in the intestine, releasing oncospheres that migrate to various tissues and evolve into cysticerci. Plasminogen (Plg) receptor proteins have been reported to play a role in migration processes for several pathogens. This work is aimed to identify Plg-binding proteins in T. solium cysticerci and determine whether T. solium recombinant enolase (rTsEnoA) is capable of specifically binding and activating human Plg. To identify Plg-binding proteins, a 2D-SDS-PAGE ligand blotting was performed, and recognized spots were identified by MS/MS. Seven proteins from T. solium cysticerci were found capable of binding Plg: fascicilin-1, fasciclin-2, enolase, MAPK, annexin, actin, and cytosolic malate dehydrogenase. To determine whether rTsEnoA binds human Plg, a ligand blotting was performed and the results were confirmed by ELISA both in the presence and absence of εACA, a competitive Plg inhibitor. Finally, rTsEnoA-bound Plg was activated to plasmin in the presence of tPA. To better understand the evolution of enolase isoforms in T. solium, a phylogenetic inference analysis including 75 enolase amino acid sequences was conducted. The origin of flatworm enolase isoforms, except for Eno4, is independent of their vertebrate counterparts. Therefore, herein we propose to designate tapeworm protein isoforms as A, B, C, and 4. In conclusion, recombinant enolase showed a strong plasminogen binding and activating activity in vitro. T. solium enolase could play a role in parasite invasion along with other plasminogen-binding proteins.


Assuntos
Proteínas de Transporte/metabolismo , Fosfopiruvato Hidratase/metabolismo , Plasminogênio/metabolismo , Taenia solium/enzimologia , Animais , Humanos , Suínos
16.
Sci Rep ; 7(1): 12345, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28955045

RESUMO

Taeniids exhibit a great adaptive plasticity, which facilitates their establishment, growth, and reproduction in a hostile inflammatory microenvironment. Transforming Growth Factor-ß (TGFß), a highly pleiotropic cytokine, plays a critical role in vertebrate morphogenesis, cell differentiation, reproduction, and immune suppression. TGFß is secreted by host cells in sites lodging parasites. The role of TGFß in the outcome of T. solium and T. crassiceps cysticercosis is herein explored. Homologues of the TGFß family receptors (TsRI and TsRII) and several members of the TGFß downstream signal transduction pathway were found in T. solium genome, and the expression of Type-I and -II TGFß receptors was confirmed by RT-PCR. Antibodies against TGFß family receptors recognized cysticercal proteins of the expected molecular weight as determined by Western blot, and different structures in the parasite external tegument. In vitro, TGFß promoted the growth and reproduction of T. crassiceps cysticerci and the survival of T. solium cysticerci. High TGFß levels were found in cerebrospinal fluid from untreated neurocysticercotic patients who eventually failed to respond to the treatment (P = 0.03) pointing to the involvement of TGFß in parasite survival. These results indicate the relevance of TGFß in the infection outcome by promoting cysticercus growth and treatment resistance.


Assuntos
Cysticercus/imunologia , Interações Hospedeiro-Parasita/imunologia , Neurocisticercose/imunologia , Taenia solium/imunologia , Fator de Crescimento Transformador beta/imunologia , Receptores de Ativinas/genética , Receptores de Ativinas/imunologia , Receptores de Ativinas/metabolismo , Animais , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/metabolismo , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Cysticercus/genética , Cysticercus/metabolismo , Modelos Animais de Doenças , Resistência a Medicamentos/imunologia , Genoma Helmíntico/imunologia , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Proteínas de Helminto/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neurocisticercose/líquido cefalorraquidiano , Neurocisticercose/tratamento farmacológico , Neurocisticercose/parasitologia , Transdução de Sinais/imunologia , Suínos , Taenia solium/genética , Taenia solium/metabolismo , Fator de Crescimento Transformador beta/líquido cefalorraquidiano , Fator de Crescimento Transformador beta/metabolismo
17.
PLoS Negl Trop Dis ; 11(9): e0005962, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28945737

RESUMO

In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst's proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the 'optimal' tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants.


Assuntos
Sistema Nervoso Central/parasitologia , Proteínas de Helminto/análise , Músculo Esquelético/parasitologia , Proteoma/análise , Doenças dos Suínos/parasitologia , Taenia solium/química , Teníase/veterinária , Animais , Proteômica , Suínos , Taenia solium/isolamento & purificação , Teníase/parasitologia
18.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28923896

RESUMO

Taenia solium cysticercosis, a parasitic disease that affects human health in various regions of the world, is preventable by vaccination. Both the 97-amino-acid-long KETc7 peptide and its carboxyl-terminal, 18-amino-acid-long sequence (GK-1) are found in Taenia crassiceps Both peptides have proven protective capacity against cysticercosis and are part of the highly conserved, cestode-native, 264-amino-acid long protein KE7. KE7 belongs to a ubiquitously distributed family of proteins associated with membrane processes and may participate in several vital cell pathways. The aim of this study was to identify the T. solium KE7 (TsKE7) full-length protein and to determine its immunogenic properties. Recombinant TsKE7 (rTsKE7) was expressed in Escherichia coli Rosetta2 cells and used to obtain mouse polyclonal antibodies. Anti-rTsKE7 antibodies detected the expected native protein among the 350 spots developed from T. solium cyst vesicular fluid in a mass spectrometry-coupled immune proteomic analysis. These antibodies were then used to screen a phage-displayed 7-random-peptide library to map B-cell epitopes. The recognized phages displayed 9 peptides, with the consensus motif Y(F/Y)PS sequence, which includes YYYPS (named GK-1M, for being a GK-1 mimotope), exactly matching a part of GK-1. GK-1M was recognized by 58% of serum samples from cysticercotic pigs with 100% specificity but induced weak protection against murine cysticercosis. In silico analysis revealed a universal T-cell epitope(s) in native TsKE7 potentially capable of stimulating cytotoxic T lymphocytes and helper T lymphocytes under different major histocompatibility complex class I and class II mouse haplotypes. Altogether, these results provide a rationale for the efficacy of the KETc7, rTsKE7, and GK-1 peptides as vaccines.


Assuntos
Antígenos de Helmintos/imunologia , Taenia solium/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/genética , Clonagem Molecular , Cisticercose/imunologia , Cisticercose/prevenção & controle , Cisticercose/veterinária , Mapeamento de Epitopos , Escherichia coli/genética , Expressão Gênica , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Suínos , Linfócitos T/imunologia , Taenia solium/genética
19.
Science ; 357(6348): 260-261, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28729503
20.
J Med Chem ; 60(3): 899-912, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28075589

RESUMO

Three water-soluble Ru(II) chiral heteroleptic coordination compounds [Ru(en)(pdto)]Cl2 (1), [Ru(gly)(pdto)]Cl (2), and [Ru(acac)(pdto)]Cl (3), where pdto = 2,2'-[1,2-ethanediylbis-(sulfanediyl-2,1-ethanediyl)]dipyridine, en = ethylendiamine, gly = glycinate, and acac = acetylacetonate, have been synthezised and fully characterized. The crystal structures of compounds 1-3 are described. The IC50 values for compounds 1-3 are within nanomolar range (14, 12, and 6 nM, respectively). The cytotoxicity for human peripheral blood lymphocytes is extremely low (>100 µM). Selectivity indexes for Ru(II) compounds are in the range 700-1300. Trophozoites exposed to Ru(II) compounds die through an apoptotic pathway triggered by ROS production. The orally administration to infected mice induces a total elimination of the parasite charge in mice faeces 1-2-fold faster than metronidazole. Besides, all compounds inhibit the trophozoite proliferation in amoebic liver abscess induced in hamster. All our results lead us to propose these compounds as promising candidates as antiparasitic agents.


Assuntos
Antiprotozoários/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Compostos de Rutênio/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/uso terapêutico , Apoptose/efeitos dos fármacos , Células Cultivadas , Cricetinae , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Abscesso Hepático Amebiano/tratamento farmacológico , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Rutênio/química , Compostos de Rutênio/uso terapêutico , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA