Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): 3667-3681, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321961

RESUMO

The Wnt/ß-Catenin pathway plays a key role in cell fate determination during development and in adult tissue regeneration by stem cells. These processes involve profound gene expression and epigenome remodeling and linking Wnt/ß-Catenin signaling to chromatin modifications has been a challenge over the past decades. Functional studies of the lysine demethylase LSD1/KDM1A converge to indicate that this epigenetic regulator is a key regulator of cell fate, although the extracellular cues controlling LSD1 action remain largely unknown. Here we show that ß-Catenin is a substrate of LSD1. Demethylation by LSD1 prevents ß-Catenin degradation thereby maintaining its nuclear levels. Consistently, in absence of LSD1, ß-Catenin transcriptional activity is reduced in both MuSCs and ESCs. Moreover, inactivation of LSD1 in mouse muscle stem cells and embryonic stem cells shows that LSD1 promotes mitotic spindle orientation via ß-Catenin protein stabilization. Altogether, by inscribing LSD1 and ß-Catenin in the same molecular cascade linking extracellular factors to gene expression, our results provide a mechanistic explanation to the similarity of action of canonical Wnt/ß-Catenin signaling and LSD1 on stem cell fate.


Assuntos
Autorrenovação Celular , Histona Desmetilases , Via de Sinalização Wnt , beta Catenina , Animais , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , beta Catenina/metabolismo , beta Catenina/genética , Camundongos , Autorrenovação Celular/genética , Núcleo Celular/metabolismo , Fuso Acromático/metabolismo , Diferenciação Celular/genética , Humanos , Células-Tronco/metabolismo , Células-Tronco/citologia
2.
Nucleic Acids Res ; 52(6): 3031-3049, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38281187

RESUMO

Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.


Assuntos
Senilidade Prematura , Histonas , Fibras Musculares Esqueléticas , Animais , Camundongos , Senilidade Prematura/genética , DNA , Quebras de DNA de Cadeia Dupla , Histonas/genética , Histonas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nucleossomos
4.
Brain ; 146(8): 3470-3483, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454683

RESUMO

Distal hereditary motor neuropathy represents a group of motor inherited neuropathies leading to distal weakness. We report a family of two brothers and a sister affected by distal hereditary motor neuropathy in whom a homozygous variant c.3G>T (p.1Met?) was identified in the COQ7 gene. This gene encodes a protein required for coenzyme Q10 biosynthesis, a component of the respiratory chain in mitochondria. Mutations of COQ7 were previously associated with severe multi-organ disorders characterized by early childhood onset and developmental delay. Using patient blood samples and fibroblasts derived from a skin biopsy, we investigated the pathogenicity of the variant of unknown significance c.3G>T (p.1Met?) in the COQ7 gene and the effect of coenzyme Q10 supplementation in vitro. We showed that this variation leads to a severe decrease in COQ7 protein levels in the patient's fibroblasts, resulting in a decrease in coenzyme Q10 production and in the accumulation of 6-demethoxycoenzyme Q10, the COQ7 substrate. Interestingly, such accumulation was also found in the patient's plasma. Normal coenzyme Q10 and 6-demethoxycoenzyme Q10 levels were restored in vitro by using the coenzyme Q10 precursor 2,4-dihydroxybenzoic acid, thus bypassing the COQ7 requirement. Coenzyme Q10 biosynthesis deficiency is known to impair the mitochondrial respiratory chain. Seahorse experiments showed that the patient's cells mainly rely on glycolysis to maintain sufficient ATP production. Consistently, the replacement of glucose by galactose in the culture medium of these cells reduced their proliferation rate. Interestingly, normal proliferation was restored by coenzyme Q10 supplementation of the culture medium, suggesting a therapeutic avenue for these patients. Altogether, we have identified the first example of recessive distal hereditary motor neuropathy caused by a homozygous variation in the COQ7 gene, which should thus be included in the gene panels used to diagnose peripheral inherited neuropathies. Furthermore, 6-demethoxycoenzyme Q10 accumulation in the blood can be used to confirm the pathogenic nature of the mutation. Finally, supplementation with coenzyme Q10 or derivatives should be considered to prevent the progression of COQ7-related peripheral inherited neuropathy in diagnosed patients.


Assuntos
Doenças Mitocondriais , Ubiquinona , Masculino , Humanos , Pré-Escolar , Ubiquinona/uso terapêutico , Mutação/genética , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Ataxia/genética
5.
Genes (Basel) ; 13(12)2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36553512

RESUMO

X-linked Myopathy with Excessive Autophagy (XMEA) is a rare autophagic vacuolar myopathy caused by mutations in the Vacuolar ATPase assembly factor VMA21 gene; onset usually occurs during childhood and rarely occurs during adulthood. We described a 22-year-old patient with XMEA, whose onset was declared at 11 through gait disorder. He had severe four-limb proximal weakness and amyotrophy, and his proximal muscle MRC score was between 2 and 3/5 in four limbs; creatine kinase levels were elevated (1385 IU/L), and electroneuromyography and muscle MRI were suggestive of myopathy. Muscle biopsy showed abnormalities typical of autophagic vacuolar myopathy. We detected a hemizygous, unreported, intronic, single-nucleotide substitution c.164-20T>A (NM_001017980.4) in intron 2 of the VMA21 gene. Fibroblasts derived from this patient displayed a reduced level of VMA21 transcripts (at 40% of normal) and protein, suggesting a pathogenicity related to an alteration of the splicing efficiency associated with an intron retention. This patient with XMEA displayed a severe phenotype (rapid weakness of upper and lower limbs) due to a new intronic variant of VMA21, related to an alteration in the splicing efficiency associated with intron retention, suggesting that phenotype severity is closely related to the residual expression of the VMA21 protein.


Assuntos
Doenças Musculares , ATPases Vacuolares Próton-Translocadoras , Masculino , Humanos , Íntrons/genética , ATPases Vacuolares Próton-Translocadoras/genética , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação , Debilidade Muscular/genética , Autofagia/genética
6.
Acta Neuropathol ; 144(4): 707-731, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948834

RESUMO

Congenital myasthenic syndromes (CMS) are predominantly characterized by muscle weakness and fatigability and can be caused by a variety of mutations in genes required for neuromuscular junction formation and maintenance. Among them, AGRN encodes agrin, an essential synaptic protein secreted by motoneurons. We have identified severe CMS patients with uncharacterized p.R1671Q, p.R1698P and p.L1664P mutations in the LG2 domain of agrin. Overexpression in primary motoneurons cultures in vitro and in chick spinal motoneurons in vivo revealed that the mutations modified agrin trafficking, leading to its accumulation in the soma and/or in the axon. Expression of mutant agrins in cultured cells demonstrated accumulation of agrin in the endoplasmic reticulum associated with induction of unfolded protein response (UPR) and impaired secretion in the culture medium. Interestingly, evaluation of the specific activity of individual agrins on AChR cluster formation indicated that when secreted, mutant agrins retained a normal capacity to trigger the formation of AChR clusters. To confirm agrin accumulation and secretion defect, iPS cells were derived from a patient and differentiated into motoneurons. Patient iPS-derived motoneurons accumulated mutant agrin in the soma and increased XBP1 mRNA splicing, suggesting UPR activation. Moreover, co-cultures of patient iPS-derived motoneurons with myotubes confirmed the deficit in agrin secretion and revealed a reduction in motoneuron survival. Altogether, we report the first mutations in AGRN gene that specifically affect agrin secretion by motoneurons. Interestingly, the three patients carrying these mutations were initially suspected of spinal muscular atrophy (SMA). Therefore, in the presence of patients with a clinical presentation of SMA but without mutation in the SMN1 gene, it can be worth to look for mutations in AGRN.


Assuntos
Agrina , Síndromes Miastênicas Congênitas , Agrina/genética , Humanos , Neurônios Motores/metabolismo , Mutação , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Junção Neuromuscular/metabolismo
7.
Hum Mutat ; 43(12): 1898-1908, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904125

RESUMO

MORC2 gene encodes a ubiquitously expressed nuclear protein involved in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous mutations in MORC2 gene have been associated with a spectrum of disorders affecting the peripheral nervous system such as Charcot-Marie-Tooth (CMT2Z), spinal muscular atrophy-like with or without cerebellar involvement, and a developmental syndrome associated with impaired growth, craniofacial dysmorphism and axonal neuropathy (DIGFAN syndrome). Such variability in clinical manifestations associated with the increasing number of variants of unknown significance detected by next-generation sequencing constitutes a serious diagnostic challenge. Here we report the characterization of an in vitro model to evaluate the pathogenicity of variants of unknown significance based on MORC2 overexpression in a neuroblastoma cell line SH-EP or cortical neurons. Likewise, we show that MORC2 mutants affect survival and trigger apoptosis over time in SH-EP cell line. Furthermore, overexpression in primary cortical neurons increases apoptotic cell death and decreases neurite outgrowth. Altogether, these approaches establish the pathogenicity of two new variants p.Gly444Arg and p.His446Gln in three patients from two families. These new mutations in MORC2 gene are associated with autosomal dominant CMT and with adult late onset proximal motor neuropathy, further increasing the spectrum of clinical manifestations associated with MORC2 mutations.


Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Adulto , Humanos , Doença de Charcot-Marie-Tooth/genética , Mutação , Heterozigoto , Montagem e Desmontagem da Cromatina , Fenótipo , Fatores de Transcrição/genética
8.
Nucleic Acids Res ; 48(9): 4601-4613, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32266374

RESUMO

While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.


Assuntos
Histonas/fisiologia , Músculo Esquelético/metabolismo , Transcrição Gênica , Ativação Transcricional , Animais , Diferenciação Celular , Células Cultivadas , Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Histonas/genética , Histonas/metabolismo , Camundongos , Fibras Musculares Esqueléticas , Músculo Esquelético/citologia , RNA-Seq , Sequências Repetitivas de Ácido Nucleico , Sítio de Iniciação de Transcrição
9.
Proc Natl Acad Sci U S A ; 115(40): 10028-10033, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224481

RESUMO

The KAT5 (Tip60/Esa1) histone acetyltransferase is part of NuA4, a large multifunctional complex highly conserved from yeast to mammals that targets lysines on H4 and H2A (X/Z) tails for acetylation. It is essential for cell viability, being a key regulator of gene expression, cell proliferation, and stem cell renewal and an important factor for genome stability. The NuA4 complex is directly recruited near DNA double-strand breaks (DSBs) to facilitate repair, in part through local chromatin modification and interplay with 53BP1 during the DNA damage response. While NuA4 is detected early after appearance of the lesion, its precise mechanism of recruitment remains to be defined. Here, we report a stepwise recruitment of yeast NuA4 to DSBs first by a DNA damage-induced phosphorylation-dependent interaction with the Xrs2 subunit of the Mre11-Rad50-Xrs2 (MRX) complex bound to DNA ends. This is followed by a DNA resection-dependent spreading of NuA4 on each side of the break along with the ssDNA-binding replication protein A (RPA). Finally, we show that NuA4 can acetylate RPA and regulate the dynamics of its binding to DNA, hence targeting locally both histone and nonhistone proteins for lysine acetylation to coordinate repair.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Fúngico , Histona Acetiltransferases , Proteínas de Saccharomyces cerevisiae , Acetilação , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
10.
Methods Mol Biol ; 1528: 39-51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27854014

RESUMO

Purification of native biological material provides powerful tools for the functional analysis of enzymes and proteins in chromatin. In particular, histone proteins harbor numerous post-translational modifications, which may differ between species, tissues, and growth conditions and are lacking on recombinant histones. Moreover, the physiological substrate of most enzymes that modify histones is chromatin and the majority of these enzymes need to be part of a multiprotein assembly to be able to act on chromatin. For the yeast Saccharomyces cerevisiae different chromatin purification protocols are available but often result in poor yields or rely on genetic manipulation. We present a simple purification protocol that can yield up to 150 µg of pure native chromatin per liter of yeast culture. The purified material can be obtained from mutant cells lacking specific histone modifications and can be used in in vitro chromatin assembly for biochemical studies. Based on the extremely high degree of conservation throughout eukaryotes, this modifiable native chromatin can be used in studies with factors from other organisms including humans.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Acetilação , Metilação , Saccharomyces cerevisiae/metabolismo
11.
Methods Mol Biol ; 1528: 53-67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27854015

RESUMO

Post-translational modifications of histones play essential roles in regulating chromatin structure and function. These are tightly regulated in vivo and there is an intricate cross-talk between different marks as they are recognized by specific reader modules present in a large number of nuclear factors. In order to precisely dissect these processes in vitro native reagents like purified chromatin and histone modifying/remodeling enzymes are required to more accurately reproduce physiological conditions. The vast majority of these enzymes need to be part of stable multiprotein complexes with cofactors enabling them to act on chromatin substrates and/or read specific histone marks. In the accompanying chapter, we have described the protocol for purification of native chromatin from yeast cells (Chapter 3 ). Here, we present the methods to obtain highly purified native chromatin modifying complexes from Saccharomyces cerevisiae, based on Tandem Affinity Purification (TAP). We also present possible applications and useful functional assays that can be performed using these yeast native reagents.


Assuntos
Bioensaio/métodos , Cromatina/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Mol Cell Biol ; 36(22): 2768-2781, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27550811

RESUMO

Recognition of histone marks by reader modules is thought to be at the heart of epigenetic mechanisms. These protein domains are considered to function by targeting regulators to chromosomal loci carrying specific histone modifications. This is important for proper gene regulation as well as propagation of epigenetic information. The NuA4 acetyltransferase complex contains two of these reader modules, an H3K4me3-specific plant homeodomain (PHD) within the Yng2 subunit and an H3K36me2/3-specific chromodomain in the Eaf3 subunit. While each domain showed a close functional interaction with the respective histone mark that it recognizes, at the biochemical level, genetic level (as assessed with epistatic miniarray profile screens), and phenotypic level, cells with the combined loss of both readers showed greatly enhanced phenotypes. Chromatin immunoprecipitation coupled with next-generation sequencing experiments demonstrated that the Yng2 PHD specifically directs H4 acetylation near the transcription start site of highly expressed genes, while Eaf3 is important downstream on the body of the genes. Strikingly, the recruitment of the NuA4 complex to these loci was not significantly affected. Furthermore, RNA polymerase II occupancy was decreased only under conditions where both PHD and chromodomains were lost, generally in the second half of the gene coding regions. Altogether, these results argue that methylated histone reader modules in NuA4 are not responsible for its recruitment to the promoter or coding regions but, rather, are required to orient its acetyltransferase catalytic site to the methylated histone 3-bearing nucleosomes in the surrounding chromatin, cooperating to allow proper transition from transcription initiation to elongation.


Assuntos
Acetiltransferases/química , Genoma Fúngico , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sítios de Ligação , Domínio Catalítico , Imunoprecipitação da Cromatina , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala , Histona Acetiltransferases/química , Código das Histonas , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição
13.
Cell Rep ; 8(1): 190-203, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25001279

RESUMO

Centromeres, epigenetically defined by the presence of the histone H3 variant CenH3, are essential for ensuring proper chromosome segregation. In mammals, centromeric CenH3(CENP-A) deposition requires its dedicated chaperone HJURP and occurs during telophase/early G1. We find that the cell-cycle-dependent recruitment of HJURP to centromeres depends on its timely phosphorylation controlled via cyclin-dependent kinases. A nonphosphorylatable HJURP mutant localizes prematurely to centromeres in S and G2 phase. This unregulated targeting causes a premature loading of CenH3(CENP-A) at centromeres, and cell-cycle delays ensue. Once recruited to centromeres, HJURP functions to promote CenH3(CENP-A) deposition by a mechanism involving a unique DNA-binding domain. With our findings, we propose a model wherein (1) the phosphorylation state of HJURP controls its centromeric recruitment in a cell-cycle-dependent manner, and (2) HJURP binding to DNA is a mechanistic determinant in CenH3(CENP-A) loading.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ciclo Celular , Linhagem Celular Tumoral , Proteína Centromérica A , Proteínas de Ligação a DNA/química , Humanos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica
14.
EMBO J ; 33(12): 1397-415, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24843044

RESUMO

The NuA4 histone acetyltransferase complex is required for gene regulation, cell cycle progression, and DNA repair. Dissection of the 13-subunit complex reveals that the Eaf7 subunit bridges Eaf5 with Eaf3, a H3K36me3-binding chromodomain protein, and this Eaf5/7/3 trimer is anchored to NuA4 through Eaf5. This trimeric subcomplex represents a functional module, and a large portion exists in a native form outside the NuA4 complex. Gene-specific and genome-wide location analyses indicate that Eaf5/7/3 correlates with transcription activity and is enriched over the coding region. In agreement with a role in transcription elongation, the Eaf5/7/3 trimer interacts with phosphorylated RNA polymerase II and helps its progression. Loss of Eaf5/7/3 partially suppresses intragenic cryptic transcription arising in set2 mutants, supporting a role in nucleosome destabilization. On the other hand, loss of the trimer leads to an increase of replication-independent histone exchange over the coding region of transcribed genes. Taken together, these results lead to a model where Eaf5/7/3 associates with elongating polymerase to promote the disruption of nucleosomes in its path, but also their refolding in its wake.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Histona Acetiltransferases/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Nucleossomos/fisiologia , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetiltransferases/metabolismo , Western Blotting , Imunoprecipitação da Cromatina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/metabolismo
15.
Mol Cell ; 53(4): 631-44, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24530302

RESUMO

Centromeres are essential for ensuring proper chromosome segregation in eukaryotes. Their definition relies on the presence of a centromere-specific H3 histone variant CenH3, known as CENP-A in mammals. Its overexpression in aggressive cancers raises questions concerning its effect on chromatin dynamics and contribution to tumorigenesis. We find that CenH3 overexpression in human cells leads to ectopic enrichment at sites of active histone turnover involving a heterotypic tetramer containing CenH3-H4 with H3.3-H4. Ectopic localization of this particle depends on the H3.3 chaperone DAXX rather than the dedicated CenH3 chaperone HJURP. This aberrant nucleosome occludes CTCF binding and has a minor effect on gene expression. Cells overexpressing CenH3 are more tolerant of DNA damage. Both the survival advantage and CTCF occlusion in these cells are dependent on DAXX. Our findings illustrate how changes in histone variant levels can disrupt chromatin dynamics and suggests a possible mechanism for cell resistance to anticancer treatments.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Proteína Centromérica A , Cromatina/metabolismo , Mapeamento Cromossômico , Proteínas Correpressoras , Dano ao DNA , Epitopos/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Espectrometria de Massas , Microscopia de Fluorescência , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/metabolismo
16.
Cell Rep ; 1(6): 730-40, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22813747

RESUMO

Discovering how histone variants that mark distinct chromatin regions affect a developmental program is a major challenge in the epigenetics field. To assess the importance of the H3.3 histone variant and its dedicated histone chaperone HIRA, we used an established developmental model, Xenopus laevis. After the early rapid divisions exploiting a large maternal pool of both replicative H3.2 and replacement H3.3, H3.3 transcripts show a distinct peak of expression at gastrulation. Depletion of both H3.2 and H3.3 leads to an early gastrulation arrest. However, with only H3.3 depletion, defects occur at late gastrulation, impairing further development. Providing exogenous H3.3 mRNAs, but not replicative H3.2 mRNAs, rescues these defects. Notably, downregulation of the H3.3 histone chaperone HIRA similarly impairs late gastrulation, and we find a global defect in H3.3 incorporation into chromatin comparable to H3.3 depletion. We discuss how specific HIRA-dependent H3.3 deposition is required for chromatin dynamics during gastrulation.


Assuntos
Desenvolvimento Embrionário , Gastrulação , Histonas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromatina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Gastrulação/efeitos dos fármacos , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Chaperonas de Histonas/metabolismo , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Morfolinos/farmacologia , Fenótipo , Proteínas com Domínio T/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas de Xenopus/genética
17.
Mol Cell ; 44(6): 928-41, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22195966

RESUMO

Establishment of a proper chromatin landscape is central to genome function. Here, we explain H3 variant distribution by specific targeting and dynamics of deposition involving the CAF-1 and HIRA histone chaperones. Impairing replicative H3.1 incorporation via CAF-1 enables an alternative H3.3 deposition at replication sites via HIRA. Conversely, the H3.3 incorporation throughout the cell cycle via HIRA cannot be replaced by H3.1. ChIP-seq analyses reveal correlation between HIRA-dependent H3.3 accumulation and RNA pol II at transcription sites and specific regulatory elements, further supported by their biochemical association. The HIRA complex shows unique DNA binding properties, and depletion of HIRA increases DNA sensitivity to nucleases. We propose that protective nucleosome gap filling of naked DNA by HIRA leads to a broad distribution of H3.3, and HIRA association with Pol II ensures local H3.3 enrichment at specific sites. We discuss the importance of this H3.3 deposition as a salvage pathway to maintain chromatin integrity.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fator 1 de Modelagem da Cromatina/metabolismo , Replicação do DNA , Desoxirribonucleases/metabolismo , Células HeLa , Chaperonas de Histonas/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo
18.
J Biol Chem ; 285(21): 15966-77, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20332092

RESUMO

Structural and functional analyses of nucleosomes containing histone variant H2A.Z have drawn a lot of interest over the past few years. Important work in budding yeast has shown that H2A.Z (Htz1)-containing nucleosomes are specifically located on the promoter regions of genes, creating a specific chromatin structure that is poised for disassembly during transcription activation. The SWR1 complex is responsible for incorporation of Htz1 into nucleosomes through ATP-dependent exchange of canonical H2A-H2B dimers for Htz1-H2B dimers. Interestingly, the yeast SWR1 complex is functionally linked to the NuA4 acetyltransferase complex in vivo. NuA4 and SWR1 are physically associated in higher eukaryotes as they are homologous to the TIP60/p400 complex, which encompasses both histone acetyltransferase (Tip60) and histone exchange (p400/Domino) activities. Here we present work investigating the impact of NuA4-dependent acetylation on SWR1-driven incorporation of H2A.Z into chromatin. Using in vitro histone exchange assays with native chromatin, we demonstrate that prior chromatin acetylation by NuA4 greatly stimulates the exchange of H2A for H2A.Z. Interestingly, we find that acetylation of H2A or H4 N-terminal tails by NuA4 can independently stimulate SWR1 activity. Accordingly, we demonstrate that mutations of H4 or H2A N-terminal lysine residues have similar effects on H2A.Z incorporation in vivo, and cells carrying mutations in both tails are nonviable. Finally, depletion experiments indicate that the bromodomain-containing protein Bdf1 is important for NuA4-dependent stimulation of SWR1. These results provide important mechanistic insight into the functional cross-talk between chromatin acetylation and ATP-dependent exchange of histone H2A variants.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Histona Acetiltransferases/genética , Histonas/genética , Mutação , Nucleossomos/genética , Multimerização Proteica/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Cell ; 137(3): 485-97, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19410545

RESUMO

The histone H3 variant CenH3, called CENP-A in humans, is central in centromeric chromatin to ensure proper chromosome segregation. In the absence of an underlying DNA sequence, it is still unclear how CENP-A deposition at centromeres is determined. Here, we purified non-nucleosomal CENP-A complexes to identify direct CENP-A partners involved in such a mechanism and identified HJURP. HJURP was not detected in H3.1- or H3.3-containing complexes, indicating its specificity for CENP-A. HJURP centromeric localization is cell cycle regulated, and its transient appearance at the centromere coincides precisely with the proposed time window for new CENP-A deposition. Furthermore, HJURP downregulation leads to a major reduction in CENP-A at centromeres and impairs deposition of newly synthesized CENP-A, causing mitotic defects. We conclude that HJURP is a key factor for CENP-A deposition and maintenance at centromeres.


Assuntos
Autoantígenos/metabolismo , Ciclo Celular/fisiologia , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Autoantígenos/genética , Sequência de Bases , Linhagem Celular , Centrômero/ultraestrutura , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Histonas/metabolismo , Humanos , Ligação Proteica
20.
Nature ; 452(7189): 877-81, 2008 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-18354397

RESUMO

A unique feature of the germ cell lineage is the generation of totipotency. A critical event in this context is DNA demethylation and the erasure of parental imprints in mouse primordial germ cells (PGCs) on embryonic day 11.5 (E11.5) after they enter into the developing gonads. Little is yet known about the mechanism involved, except that it is apparently an active process. We have examined the associated changes in the chromatin to gain further insights into this reprogramming event. Here we show that the chromatin changes occur in two steps. The first changes in nascent PGCs at E8.5 establish a distinctive chromatin signature that is reminiscent of pluripotency. Next, when PGCs are residing in the gonads, major changes occur in nuclear architecture accompanied by an extensive erasure of several histone modifications and exchange of histone variants. Furthermore, the histone chaperones HIRA and NAP-1 (NAP111), which are implicated in histone exchange, accumulate in PGC nuclei undergoing reprogramming. We therefore suggest that the mechanism of histone replacement is critical for these chromatin rearrangements to occur. The marked chromatin changes are intimately linked with genome-wide DNA demethylation. On the basis of the timing of the observed events, we propose that if DNA demethylation entails a DNA repair-based mechanism, the evident histone replacement would represent a repair-induced response event rather than being a prerequisite.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Epigênese Genética , Células Germinativas/metabolismo , Animais , Metilação de DNA , Gônadas/citologia , Gônadas/metabolismo , Histonas/metabolismo , Camundongos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA