RESUMO
Antarctic camps pose psychophysiological challenges related to isolated, confined, and extreme (ICE) conditions, including meals composed of sealed food. ICE conditions can influence the microbiome and inflammatory responses. Seven expeditioners took part in a 7-week Antarctic summer camp (Nelson Island) and were evaluated at Pre-Camp (i.e., at the beginning of the ship travel), Camp-Initial (i.e., 4th and 5th day in camp), Camp-Middle (i.e., 19th-20th, and 33rd-34th days), Camp-Final (i.e., 45th-46th day), and at the Post-Camp (on the ship). At the Pre-Camp, Camp-Initial, and Camp-Final, we assessed microbiome and inflammatory markers. Catecholamines were accessed Pre- and Post-Camp. Heart rate variability (HRV), leptin, thyroid stimulating hormone (TSH), and thyroxine (T4) were accessed at all time points. Students' t-tests or repeated-measures analysis of variance (one or two-way ANOVA) followed by Student-Newman-Keuls (post hoc) were used for parametric analysis. Kruskal-Wallis test was applied for non-parametric analysis. Microbiome analysis showed a predominance of Pseudomonadota (34.01%), Bacillota (29.82%), and Bacteroidota (18.54%), followed by Actinomycetota (5.85%), and Fusobacteria (5.74%). Staying in a long-term Antarctic camp resulted in microbiome fluctuations with a reduction in Pseudomonadota-a "microbial signature" of disease. However, the pro-inflammatory marker leptin and IL-8 tended to increase, and the angiogenic factor VEGF was reduced during camp. These results suggest that distinct Antarctic natural environments and behavioral factors modulate oral microbiome and inflammation.
RESUMO
Open-water diving in a polar environment is a psychophysiological challenge to the human organism. We evaluated the effect of short-term diving (i.e., 10 min) in Antarctic waters on autonomic cardiac control, thyroid hormone concentration, body temperatures, mood, and neuropsychological responses (working memory and sleepiness). Data collection was carried out at baseline, before, and after diving in four individuals divided into the supporting (n=2) and diving (n=2) groups. In the latter group, autonomic cardiac control (by measuring heart rate variability) was also assessed during diving. Diving decreased thyroid-stimulating hormone (effect size = 1.6) and thyroxine (effect size = 2.1) concentrations; these responses were not observed for the supporting group. Diving also reduced both the parasympathetic (effect size = 2.6) and sympathetic activities to the heart (ES > 3.0). Besides, diving reduced auricular (effect size > 3.0), skin [i.e., hand (effect size = 1.2) and face (effect size = 1.5)] temperatures compared to pre-dive and reduced sleepiness state (effect size = 1.3) compared to basal, without changing performance in the working memory test. In conclusion, short-term diving in icy waters affects the hypothalamic-pituitary-thyroid axis, modulates autonomic cardiac control, and reduces body temperature, which seems to decrease sleepiness.
Assuntos
Mergulho , Regiões Antárticas , Brasil , Mergulho/fisiologia , Congelamento , Frequência Cardíaca/fisiologia , Humanos , Sonolência , Hormônios TireóideosRESUMO
We evaluated the influence of an Antarctic expedition, consisting of 26-day ship travel followed by 24-day camping in the Antarctic field during the summer season, on hormonal responses, autonomic cardiac control, and mood states in individuals that live in tropical regions. Data collection was carried out in 10 individuals on the 2nd, 16th, and 26th days aboard the ship (characterized by exposure to low-luminosity and temperature-controlled environments) and on the 4th, 11th, and 23rd days of camping in the Antarctic field (prolonged exposure to natural luminosity and cold environments). Morning samples of saliva (to determine testosterone and cortisol concentrations) and blood [to determine thyroid-stimulating hormone (TSH) and thyroxine (T4) concentrations] were obtained. Next, resting heart rate variability (HRV) was recorded, and the volunteers answered a mood questionnaire. Samples of saliva for measurement of melatonin concentration were obtained at night. At the end of ship travel, blood TSH and salivary melatonin increased by 15.6% and 72.3%, respectively, whereas salivary cortisol reduced by 37.1% compared to initial values and T4 reduced by 12.2% compared to 16th day. These hormonal changes occurred alongside increased depression score and biphasic changes in HRV parameters; for example, the RMSSD, a parasympathetic-related parameter, initially decreased by 47.8% and then returned towards baseline values by the end of the ship travel. In contrast, during the camp period, blood TSH and T4 reduced by 26.5% and 34.1%, respectively, and salivary cortisol increased by 72.1%, without concomitant changes in melatonin and HRV. Also, tension score transiently reduced and then increased towards the pre-camp score by the end of the field period. Testosterone remained unaltered throughout the expedition. In conclusion, ship travel and camping in Antarctica induced distinct neuroendocrine changes, cardiac autonomic regulation, and mood states. These specific changes most likely resulted from exposure to different natural luminosity, degrees of confinement, and ambient temperature in these environments.
Assuntos
Acampamento , Expedições , Regiões Antárticas , Humanos , Hidrocortisona , Navios , NeveRESUMO
OBJECTIVE: To assess the incidence of biotinidase deficiency among newborns and their clinical outcome up to one year of age in a large pilot screening study in Minas Gerais, Brazil. METHODS: A prospective cohort study was conducted from September 2007 to June 2008 with heel-prick blood samples collected on filter paper for the purpose of newborn screening. A qualitative colorimetric test was used as the primary screening method. Colorimetric-positive cases were further tested with a serum confirmatory assay. Gene sequencing was performed for eight children suspected with biotinidase deficiency and for some of their parents. Positive cases were daily supplemented with oral biotin and were followed up for approximately six years. RESULTS: Out of 182,891 newborns screened, 129 were suspected of having biotinidase deficiency. Partial deficiency was confirmed in seven children (one was homozygous for p.D543E) and profound deficiency in one child (homozygous p.H485Q). Thus the incidence was one in 22,861 live births (95% confidence interval 1:13,503 to 1:74,454) for profound and partial biotinidase deficiency combined. Two novel mutations were detected: p.A281V and p.E177K. In silico analysis and estimation of the enzyme activity in the children and their parents showed that p.A281V is pathogenic and p.E177K behaves like p.D444H. CONCLUSION: The incidence of biotinidase deficiency in newborn screening in Minas Gerais was higher than several international studies. The sample size should be larger for final conclusions. Oral daily biotin apparently precluded clinical symptoms, but it may have been unnecessary in some newborns.