Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
Fluids Barriers CNS ; 21(1): 26, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475818

RESUMO

Glymphatic transport is vital for the physiological homeostasis of the retina and optic nerve. Pathological alterations of ocular glymphatic fluid transport and enlarged perivascular spaces have been described in glaucomatous mice. It remains to be established how diabetic retinopathy, which impairs vision in about 50% of diabetes patients, impacts ocular glymphatic fluid transport. Here, we examined ocular glymphatic transport in chronic hyperglycemic diabetic mice as well as in healthy mice experiencing a daily transient increase in blood glucose. Mice suffering from severe diabetes for two and four months, induced by streptozotocin, exhibited no alterations in ocular glymphatic fluid transport in the optic nerve compared to age-matched, non-diabetic controls. In contrast, transient increases in blood glucose induced by repeated daily glucose injections in healthy, awake, non-diabetic mice accelerated antero- and retrograde ocular glymphatic transport. Structural analysis showed enlarged perivascular spaces in the optic nerves of glucose-treated mice, which were absent in diabetic mice. Thus, transient repeated hyperglycemic events, but not constant hyperglycemia, ultimately enlarge perivascular spaces in the murine optic nerve. These findings indicate that fluid transport in the mouse eye is vulnerable to fluctuating glycemic levels rather than constant hyperglycemia, suggesting that poor glycemic control drives glymphatic malfunction and perivascular enlargement in the optic nerve.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Camundongos , Humanos , Animais , Glicemia , Transporte Biológico
3.
Fluids Barriers CNS ; 20(1): 93, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098084

RESUMO

Traditionally, the meninges are described as 3 distinct layers, dura, arachnoid and pia. Yet, the classification of the connective meningeal membranes surrounding the brain is based on postmortem macroscopic examination. Ultrastructural and single cell transcriptome analyses have documented that the 3 meningeal layers can be subdivided into several distinct layers based on cellular characteristics. We here re-examined the existence of a 4th meningeal membrane, Subarachnoid Lymphatic-like Membrane or SLYM in Prox1-eGFP reporter mice. Imaging of freshly resected whole brains showed that SLYM covers the entire brain and brain stem and forms a roof shielding the subarachnoid cerebrospinal fluid (CSF)-filled cisterns and the pia-adjacent vasculature. Thus, SLYM is strategically positioned to facilitate periarterial influx of freshly produced CSF and thereby support unidirectional glymphatic CSF transport. Histological analysis showed that, in spinal cord and parts of dorsal cortex, SLYM fused with the arachnoid barrier layer, while in the basal brain stem typically formed a 1-3 cell layered membrane subdividing the subarachnoid space into two compartments. However, great care should be taken when interpreting the organization of the delicate leptomeningeal membranes in tissue sections. We show that hyperosmotic fixatives dehydrate the tissue with the risk of shrinkage and dislocation of these fragile membranes in postmortem preparations.


Assuntos
Dura-Máter , Meninges , Camundongos , Animais , Meninges/metabolismo , Dura-Máter/metabolismo , Aracnoide-Máter/metabolismo , Espaço Subaracnóideo , Córtex Cerebral
4.
Res Sq ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37961391

RESUMO

Traditionally, the meninges are described as 3 distinct layers, dura, arachnoid and pia. Yet, the classification of the connective meningeal membranes surrounding the brain is based on postmortem macroscopic examination. Ultrastructural and single cell transcriptome analyses have documented that the 3 meningeal layers can be subdivided into several distinct layers based on cellular characteristics. We here re-examined the existence of a 4th meningeal membrane, Subarachnoid Lymphatic-like Membrane or SLYM in Prox1-eGFP reporter mice. Imaging of freshly resected whole brains showed that SLYM covers the entire brain and brain stem and forms a roof shielding the subarachnoid cerebrospinal fluid (CSF)-filled cisterns and the pia-adjacent vasculature. Thus, SLYM is strategically positioned to facilitate periarterial influx of freshly produced CSF and thereby support unidirectional glymphatic CSF transport. Histological analysis showed that, in spinal cord and parts of dorsal cortex, SLYM fused with the arachnoid barrier layer, while in the basal brain stem typically formed a 1-3 cell layered membrane subdividing the subarachnoid space into two compartments. However, great care should be taken when interpreting the organization of the delicate leptomeningeal membranes in tissue sections. We show that hyperosmotic fixatives dehydrate the tissue with the risk of shrinkage and dislocation of these fragile membranes in postmortem preparations.

5.
bioRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961461

RESUMO

Traditionally, the meninges are described as 3 distinct layers, dura, arachnoid and pia. Yet, the classification of the connective meningeal membranes surrounding the brain is based on postmortem macroscopic examination. Ultrastructural and single cell transcriptome analyses have documented that the 3 meningeal layers can be subdivided into several distinct layers based on cellular characteristics. We here re-examined the existence of a 4 th meningeal membrane, S ubarachnoid Ly mphatic-like M embrane or SLYM in Prox1-eGFP reporter mice. Imaging of freshly resected whole brains showed that SLYM covers the entire brain and brain stem and forms a roof shielding the subarachnoid cerebrospinal fluid (CSF)-filled cisterns and the pia-adjacent vasculature. Thus, SLYM is strategically positioned to facilitate periarterial influx of freshly produced CSF and thereby support unidirectional glymphatic CSF transport. Histological analysis showed that, in spinal cord and parts of dorsal cortex, SLYM fused with the arachnoid barrier layer, while in the basal brain stem typically formed a 1-3 cell layered membrane subdividing the subarachnoid space into two compartments. However, great care should be taken when interpreting the organization of the delicate leptomeningeal membranes in tissue sections. We show that hyperosmotic fixatives dehydrate the tissue with the risk of shrinkage and dislocation of these fragile membranes in postmortem preparations.

6.
J R Soc Interface ; 20(204): 20230050, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37434503

RESUMO

The glymphatic system of cerebrospinal fluid transport through the perivascular spaces of the brain has been implicated in metabolic waste clearance, neurodegenerative diseases and in acute neurological disorders such as stroke and cardiac arrest. In other biological low-pressure fluid pathways such as in veins and the peripheral lymphatic system, valves play an important role in ensuring the flow direction. Though fluid pressure is low in the glymphatic system and directed bulk flow has been measured in pial and penetrating perivascular spaces, no valves have yet been identified. Valves, which asymmetrically favour forward flow to backward flow, would imply that the considerable oscillations in blood and ventricle volumes seen in magnetic resonance imaging could cause directed bulk flow. Here, we propose that astrocyte endfeet may act as such valves using a simple elastic mechanism. We combine a recent fluid mechanical model of viscous flow between elastic plates with recent measurements of in vivo elasticity of the brain to predict order of magnitude flow-characteristics of the valve. The modelled endfeet are effective at allowing forward while preventing backward flow.


Assuntos
Astrócitos , Encéfalo , Elasticidade , Cinética
7.
Fluids Barriers CNS ; 20(1): 56, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461047

RESUMO

BACKGROUND: Flow of cerebrospinal fluid (CSF) through brain perivascular spaces (PVSs) is essential for the clearance of interstitial metabolic waste products whose accumulation and aggregation is a key mechanism of pathogenesis in many diseases. The PVS geometry has important implications for CSF flow as it affects CSF and solute transport rates. Thus, the size and shape of the perivascular spaces are essential parameters for models of CSF transport in the brain and require accurate quantification. METHODS: We segmented two-photon images of pial (surface) PVSs and the adjacent arteries and characterized their sizes and shapes of cross sections from 14 PVS segments in 9 mice. Based on the analysis, we propose an idealized model that approximates the cross-sectional size and shape of pial PVSs, closely matching their area ratios and hydraulic resistances. RESULTS: The ratio of PVS-to-vessel area varies widely across the cross sections analyzed. The hydraulic resistance per unit length of the PVS scales with the PVS cross-sectional area, and we found a power-law fit that predicts resistance as a function of the area. Three idealized geometric models were compared to PVSs imaged in vivo, and their accuracy in reproducing hydraulic resistances and PVS-to-vessel area ratios were evaluated. The area ratio was obtained across different cross sections, and we found that the distribution peaks for the original PVS and its closest idealized fit (polynomial fit) were 1.12 and 1.21, respectively. The peak of the hydraulic resistance distribution is [Formula: see text] Pa  s/m[Formula: see text] and [Formula: see text] Pa s/m[Formula: see text] for the segmentation and its closest idealized fit, respectively. CONCLUSIONS: PVS hydraulic resistance can be reasonably predicted as a function of the PVS area. The proposed polynomial-based fit most closely captures the shape of the PVS with respect to area ratio and hydraulic resistance. Idealized PVS shapes are convenient for modeling, which can be used to better understand how anatomical variations affect clearance and drug transport.


Assuntos
Encéfalo , Sistema Glinfático , Camundongos , Animais , Encéfalo/irrigação sanguínea , Artérias , Algoritmos , Transporte Biológico , Imageamento por Ressonância Magnética/métodos
8.
Nat Commun ; 14(1): 1871, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015909

RESUMO

Information transfer within neuronal circuits depends on the balance and recurrent activity of excitatory and inhibitory neurotransmission. Chloride (Cl-) is the major central nervous system (CNS) anion mediating inhibitory neurotransmission. Astrocytes are key homoeostatic glial cells populating the CNS, although the role of these cells in regulating excitatory-inhibitory balance remains unexplored. Here we show that astrocytes act as a dynamic Cl- reservoir regulating Cl- homoeostasis in the CNS. We found that intracellular chloride concentration ([Cl-]i) in astrocytes is high and stable during sleep. In awake mice astrocytic [Cl-]i is lower and exhibits large fluctuation in response to both sensory input and motor activity. Optogenetic manipulation of astrocytic [Cl-]i directly modulates neuronal activity during locomotion or whisker stimulation. Astrocytes thus serve as a dynamic source of extracellular Cl- available for GABAergic transmission in awake mice, which represents a mechanism for modulation of the inhibitory tone during sustained neuronal activity.


Assuntos
Astrócitos , Cloretos , Camundongos , Animais , Astrócitos/fisiologia , Transmissão Sináptica , Neuroglia , Encéfalo
9.
Proc Natl Acad Sci U S A ; 120(14): e2217744120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989300

RESUMO

Quantifying the flow of cerebrospinal fluid (CSF) is crucial for understanding brain waste clearance and nutrient delivery, as well as edema in pathological conditions such as stroke. However, existing in vivo techniques are limited to sparse velocity measurements in pial perivascular spaces (PVSs) or low-resolution measurements from brain-wide imaging. Additionally, volume flow rate, pressure, and shear stress variation in PVSs are essentially impossible to measure in vivo. Here, we show that artificial intelligence velocimetry (AIV) can integrate sparse velocity measurements with physics-informed neural networks to quantify CSF flow in PVSs. With AIV, we infer three-dimensional (3D), high-resolution velocity, pressure, and shear stress. Validation comes from training with 70% of PTV measurements and demonstrating close agreement with the remaining 30%. A sensitivity analysis on the AIV inputs shows that the uncertainty in AIV inferred quantities due to uncertainties in the PVS boundary locations inherent to in vivo imaging is less than 30%, and the uncertainty from the neural net initialization is less than 1%. In PVSs of N = 4 wild-type mice we find mean flow speed 16.33 ± 11.09 µm/s, volume flow rate 2.22 ± 1.983 × 103 µm3/s, axial pressure gradient ( - 2.75 ± 2.01)×10-4 Pa/µm (-2.07 ± 1.51 mmHg/m), and wall shear stress (3.00 ± 1.45)×10-3 Pa (all mean ± SE). Pressure gradients, flow rates, and resistances agree with prior predictions. AIV infers in vivo PVS flows in remarkable detail, which will improve fluid dynamic models and potentially clarify how CSF flow changes with aging, Alzheimer's disease, and small vessel disease.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Animais , Camundongos , Reologia/métodos , Encéfalo , Física , Velocidade do Fluxo Sanguíneo
10.
Res Sq ; 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824982

RESUMO

Background: Flow of cerebrospinal fluid (CSF) through brain perivascular spaces (PVSs) is essential for the clearance of interstitial metabolic waste products whose accumulation and aggregation is a key mechanism of pathogenesis in many diseases. The PVS geometry has important implications for CSF flow as it affects CSF and solute transport rates. Thus, the size and shape of the perivascular spaces are essential parameters for models of CSF transport in the brain and require accurate quantification. Methods: We segmented two-photon images of pial (surface) PVSs and the adjacent arteries and characterized their sizes and shapes of thousands of cross sections from 14 PVS segments in 9 mice. Based on the analysis, we propose an idealized model that approximates the cross-sectional size and shape of pial PVSs, closely matching their area ratios and hydraulic resistances. Results: PVS size only approximately scales with vessel size, and the ratio of PVS-to-vessel area varies widely across the thousands of cross sections analyzed. The hydraulic resistance per unit length of the PVS scales with the PVS cross-sectional area, and we found a power-law fit that predicts resistance as a function of the area. Three idealized geometric models were compared to PVSs imaged in vivo, and their accuracy in reproducing hydraulic resistances and PVS-to-vessel area ratios were evaluated. The area ratio was obtained across thousands of different cross sections, and we found that the distribution peaks for the original PVS and its closest idealized fit (polynomial fit) were 1.12 and 1.21, respectively. The peak of the hydraulic resistance distribution is 1.73 x 10 15 Pa-s/m 5 and 1.44 x 10 15 Pa-s/m 5 for the segmentation and its closest idealized fit, respectively. Conclusions: Brief summary and potential implicationsPVS hydraulic resistance can be reasonably predicted as a function of the PVS area. The proposed polynomial-based fit most closely captures the shape of the PVS with respect to area ratio and hydraulic resistance. Idealized PVS shapes are convenient for modeling, which can be used to better understand how anatomical variations affect clearance and drug delivery transport.

11.
Fluids Barriers CNS ; 19(1): 101, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522656

RESUMO

Cerebrospinal fluid (CSF) is an essential and critical component of the central nervous system (CNS). According to the concept of the "third circulation" originally proposed by Cushing, CSF is mainly produced by the choroid plexus and subsequently leaves the cerebral ventricles via the foramen of Magendie and Luschka. CSF then fills the subarachnoid space from whence it disperses to all parts of the CNS, including the forebrain and spinal cord. CSF provides buoyancy to the submerged brain, thus protecting it against mechanical injury. CSF is also transported via the glymphatic pathway to reach deep interstitial brain regions along perivascular channels; this CSF clearance pathway promotes transport of energy metabolites and signaling molecules, and the clearance of metabolic waste. In particular, CSF is now intensively studied as a carrier for the removal of proteins implicated in neurodegeneration, such as amyloid-ß and tau. Despite this key function of CSF, there is little information about its production rate, the factors controlling CSF production, and the impact of diseases on CSF flux. Therefore, we consider it to be a matter of paramount importance to quantify better the rate of CSF production, thereby obtaining a better understanding of CSF dynamics. To this end, we now review the existing methods developed to measure CSF production, including invasive, noninvasive, direct, and indirect methods, and MRI-based techniques. Depending on the methodology, estimates of CSF production rates in a given species can extend over a ten-fold range. Throughout this review, we interrogate the technical details of CSF measurement methods and discuss the consequences of minor experimental modifications on estimates of production rate. Our aim is to highlight the gaps in our knowledge and inspire the development of more accurate, reproducible, and less invasive techniques for quantitation of CSF production.


Assuntos
Sistema Nervoso Central , Sistema Glinfático , Encéfalo/metabolismo , Espaço Subaracnóideo , Ventrículos Cerebrais , Líquido Cefalorraquidiano/metabolismo
12.
Cell Rep ; 40(11): 111320, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103828

RESUMO

Glymphatic fluid transport eliminates metabolic waste from the brain including amyloid-ß, yet the methodology for studying efflux remains rudimentary. Here, we develop a method to evaluate glymphatic real-time clearance. Efflux of Direct Blue 53 (DB53, also T-1824 or Evans Blue) injected into the striatum is quantified by imaging the DB53 signal in the vascular compartment, where it is retained due to its high affinity to albumin. The DB53 signal is detectable as early as 15 min after injection and the efflux kinetics are sharply reduced in mice lacking the water channel aquaporin 4 (AQP4). Pharmacokinetic modeling reveal that DB53 efflux is consistent with the existence of two efflux paths, one with fast kinetics (T1/2 = 50 min) and another with slow kinetics (T1/2 = 240 min), in wild-type mice. This in vivo methodology will aid in defining the physiological variables that drive efflux, as well as the impact of brain states or disorders on clearance kinetics.


Assuntos
Sistema Glinfático , Animais , Aquaporina 4/metabolismo , Transporte Biológico , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Cinética , Camundongos
13.
Nat Commun ; 13(1): 3897, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794106

RESUMO

Perivascular spaces (PVS) drain brain waste metabolites, but their specific flow paths are debated. Meningeal pia mater reportedly forms the outermost boundary that confines flow around blood vessels. Yet, we show that pia is perforated and permissive to PVS fluid flow. Furthermore, we demonstrate that pia is comprised of vascular and cerebral layers that coalesce in variable patterns along leptomeningeal arteries, often merging around penetrating arterioles. Heterogeneous pial architectures form variable sieve-like structures that differentially influence cerebrospinal fluid (CSF) transport along PVS. The degree of pial coverage correlates with macrophage density and phagocytosis of CSF tracer. In vivo imaging confirms transpial influx of CSF tracer, suggesting a role of pia in CSF filtration, but not flow restriction. Additionally, pial layers atrophy with age. Old mice also exhibit areas of pial denudation that are not observed in young animals, but pia is unexpectedly hypertrophied in a mouse model of Alzheimer's disease. Moreover, pial thickness correlates with improved CSF flow and reduced ß-amyloid deposits in PVS of old mice. We show that PVS morphology in mice is variable and that the structure and function of pia suggests a previously unrecognized role in regulating CSF transport and amyloid clearance in aging and disease.


Assuntos
Doença de Alzheimer , Sistema Glinfático , Envelhecimento , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sistema Glinfático/fisiologia , Camundongos
14.
J Theor Biol ; 542: 111103, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35339513

RESUMO

Cerebrospinal fluid (CSF) flows through the perivascular spaces (PVSs) surrounding cerebral arteries. Revealing the mechanisms driving that flow could bring improved understanding of brain waste transport and insights for disorders including Alzheimer's disease and stroke. In vivo velocity measurements of CSF in surface PVSs in mice have been used to argue that flow is driven primarily by the pulsatile motion of artery walls - perivascular pumping. However, fluid dynamics theory and simulation have predicted that perivascular pumping produces flows differing from in vivo observations starkly, particularly in the phase and relative amplitude of flow oscillation. We show that coupling theoretical and simulated flows to more realistic end boundary conditions, using resistance and compliance values measured in mice instead of using periodic boundaries, results in velocities that match observations more closely in phase and relative amplitude of oscillation, while preserving the existing agreement in mean flow speed. This quantitative agreement among theory, simulation, and in vivo measurement further supports the idea that perivascular pumping is an important CSF driver in physiological conditions.


Assuntos
Doença de Alzheimer , Encéfalo , Animais , Artérias/fisiologia , Encéfalo/irrigação sanguínea , Simulação por Computador , Hidrodinâmica , Camundongos
15.
Elife ; 102021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34250902

RESUMO

Microglia are the brain's resident immune cells with a tremendous capacity to autonomously self-renew. Because microglial self-renewal has largely been studied using static tools, its mechanisms and kinetics are not well understood. Using chronic in vivo two-photon imaging in awake mice, we confirm that cortical microglia show limited turnover and migration under basal conditions. Following depletion, however, microglial repopulation is remarkably rapid and is sustained by the dynamic division of remaining microglia, in a manner that is largely independent of signaling through the P2Y12 receptor. Mathematical modeling of microglial division demonstrates that the observed division rates can account for the rapid repopulation observed in vivo. Additionally, newly born microglia resemble mature microglia within days of repopulation, although morphological maturation is different in newly born microglia in P2Y12 knock out mice. Our work suggests that microglia rapidly locally and that newly born microglia do not recapitulate the slow maturation seen in development but instead take on mature roles in the CNS.


Assuntos
Autorrenovação Celular , Microglia/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Córtex Visual/metabolismo , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Movimento Celular , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , Modelos Teóricos , Transdução de Sinais , Córtex Visual/imunologia
16.
Elife ; 102021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33687330

RESUMO

Cerebrospinal fluid (CSF) flowing through periarterial spaces is integral to the brain's mechanism for clearing metabolic waste products. Experiments that track tracer particles injected into the cisterna magna (CM) of mouse brains have shown evidence of pulsatile CSF flow in perivascular spaces surrounding pial arteries, with a bulk flow in the same direction as blood flow. However, the driving mechanism remains elusive. Several studies have suggested that the bulk flow might be an artifact, driven by the injection itself. Here, we address this hypothesis with new in vivo experiments where tracer particles are injected into the CM using a dual-syringe system, with simultaneous injection and withdrawal of equal amounts of fluid. This method produces no net increase in CSF volume and no significant increase in intracranial pressure. Yet, particle-tracking reveals flows that are consistent in all respects with the flows observed in earlier experiments with single-syringe injection.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Cisterna Magna/metabolismo , Injeções Espinhais/efeitos adversos , Animais , Artérias/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Sci Transl Med ; 12(536)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213628

RESUMO

Despite high metabolic activity, the retina and optic nerve head lack traditional lymphatic drainage. We here identified an ocular glymphatic clearance route for fluid and wastes via the proximal optic nerve in rodents. ß-amyloid (Aß) was cleared from the retina and vitreous via a pathway dependent on glial water channel aquaporin-4 (AQP4) and driven by the ocular-cranial pressure difference. After traversing the lamina barrier, intra-axonal Aß was cleared via the perivenous space and subsequently drained to lymphatic vessels. Light-induced pupil constriction enhanced efflux, whereas atropine or raising intracranial pressure blocked efflux. In two distinct murine models of glaucoma, Aß leaked from the eye via defects in the lamina barrier instead of directional axonal efflux. The results suggest that, in rodents, the removal of fluid and metabolites from the intraocular space occurs through a glymphatic pathway that might be impaired in glaucoma.


Assuntos
Sistema Glinfático , Peptídeos beta-Amiloides/metabolismo , Animais , Aquaporina 4/metabolismo , Sistema Glinfático/metabolismo , Pressão Intracraniana , Camundongos , Nervo Óptico , Retina , Corpo Vítreo
18.
Front Comput Neurosci ; 13: 92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038210

RESUMO

Recent research in neuroscience indicates the importance of tripartite synapses and gliotransmission mediated by astrocytes in neuronal system modulation. Although the astrocyte and neuronal network functions are interrelated, they are fundamentally different in their signaling patterns and, possibly, the time scales at which they operate. However, the exact nature of gliotransmission and the effect of the tripartite synapse function at the network level are currently elusive. In this paper, we propose a computational model of interactions between an astrocyte network and a neuron network, starting from tripartite synapses and spanning to a joint network level. Our model focuses on a two-dimensional setup emulating a mixed in vitro neuron-astrocyte cell culture. The model depicts astrocyte-released gliotransmitters exerting opposing effects on the neurons: increasing the release probability of the presynaptic neuron while hyperpolarizing the post-synaptic one at a longer time scale. We simulated the joint networks with various levels of astrocyte contributions and neuronal activity levels. Our results indicate that astrocytes prolong the burst duration of neurons, while restricting hyperactivity. Thus, in our model, the effect of astrocytes is homeostatic; the firing rate of the network stabilizes to an intermediate level independently of neuronal base activity. Our computational model highlights the plausible roles of astrocytes in interconnected astrocytic and neuronal networks. Our simulations support recent findings in neurons and astrocytes in vivo and in vitro suggesting that astrocytic networks provide a modulatory role in the bursting of the neuronal network.

19.
J Thorac Dis ; 9(11): 4454-4460, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29268515

RESUMO

BACKGROUND: The objective of this study was to investigate the impact of a program of major video-assisted surgery on care quality in a Unit of Thoracic Surgery. METHODS: A descriptive comparative study was conducted of 793 major thoracic procedures performed between 2009 and 2012. Quality indicators and hospital performance before [2009-2010] and after (2011 and 2012) the implementation of the program. RESULTS: The incidence of surgical complications decreased significantly from 6.32%/7.88% (2009/2010, respectively) to 1.87%/1.67% (2011/2012, respectively) [95% CI for 7.08% (4.20-9.96%); 95% CI for 1.76% (0.44-3.08%) P<0.001, respectively]. The mean hospital stay was reduced from 8.5/7.8 days in 2009/2010, respectively, to 6.3/5.8 days in 2011/2012, respectively. Mortality rates were 0.57%, 0.60%, 0.93% and 0.43% in 2009, 2010, 2011, and 2012, respectively (P=0.624, 95% CI: -0.6, 0.7). The percentages of emergency readmissions in 2009/2010 were 1.16%/1.23%, respectively vs. 2.80%/0.84% in 2011/2012. CONCLUSIONS: The implementation of the video-assisted thoracic surgery (VATS) program in the unit of Thoracic Surgery Care resulted in a significant improvement in care quality, with a reduction of length of hospital stay, but without any changes in mortality or the percentage of readmissions at 30 post-operative days.

20.
Eur J Cardiothorac Surg ; 52(1): 55-62, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369376

RESUMO

OBJECTIVES: More than 20% of lung cancer patients develop a recurrence, even after curative resection. We hypothesized that relapse may arise from the dissemination of circulating tumour cells (CTCs). This study evaluates the significance of CTC detection as regards the recurrence of non-small-cell lung cancer (NSCLC) in surgically resected patients. Secondly, we investigated the association between CTCs and the uptake of 18 F-fluorodeoxyglucose (FDG) by the primary tumour on a positron emission tomographic (PET) scan. METHODS: In this single-centre prospective study, blood samples for analysis of CTCs were obtained from 102 patients with Stage I-IIIA NSCLC both before (CTC1) and 1 month after (CTC2) radical resection. CTCs were isolated using immunomagnetic techniques. The presence of CTCs was correlated with the maximum standardized uptake value (SUVmax) measured on preoperative FDG PET/computed tomographic scans. Recurrence free survival (RFS) analysis was performed. RESULTS: CTCs were detected in 39.2% of patients before and in 27.5% 1 month after the operation. The presence of CTCs after the operation was significantly correlated with SUVmax on PET scans, pathological stage and surgical approach. Only SUVmax was an independent predictor for the presence of CTC2 on multivariate analysis. Postoperative CTCs were significantly correlated with a shorter RFS ( P = 0.005). In multivariate analysis, the presence of CTC2 was associated with RFS, independent of disease staging. CONCLUSIONS: Detection of CTCs 1 month after radical resection might be a useful marker to predict early recurrence in Stage I-III NSCLC. The SUVmax value of the primary tumour on preoperative PET scans was associated with the presence of CTC 1 month after the operation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Fluordesoxiglucose F18/farmacocinética , Neoplasias Pulmonares/diagnóstico , Estadiamento de Neoplasias , Células Neoplásicas Circulantes/patologia , Pneumonectomia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirurgia , Masculino , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/metabolismo , Células Neoplásicas Circulantes/metabolismo , Estudos Prospectivos , Compostos Radiofarmacêuticos/farmacocinética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA