Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732012

RESUMO

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Assuntos
Catequina , MicroRNAs , Neuroblastoma , Proteínas de Ligação a RNA , Catequina/análogos & derivados , Catequina/farmacologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
2.
Data Brief ; 35: 106858, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33665254

RESUMO

This article contains supplemental datasets of the recently published related research article "Synthesis, Inverse Docking-Assisted Identification and in vitro Biological Characterization of Flavonol-based Analogs of Fisetin as c-Kit, CDK2 and mTOR Inhibitors against Melanoma and Non-melanoma Skin Cancers" by Roy et al., [1]. It provides in-depth data not included in the original co-submission on the biophysical, molecular docking, and biological characterization of newly synthesized flavonol-based analogs of fisetin, a natural dietary small molecule with anticancer and anti-inflammatory properties. These synthetic small molecules were investigated as new, potential single and/or multi-kinase inhibitors of the cyclin-dependent kinase-2 (CDK2), receptor tyrosine kinases (c-KITs), and mammalian targets of rapamycin (mTOR) targets, potentially active against melanoma or non-melanoma skin cancers. Furthermore, this data-in-brief article comprises additional sets of results on several aspects of the properties of the dual and multiple kinase inhibitor compounds' effects that were not presented in the associated article, including the activated targets that are dysregulated in skin cancers; the effects on markers of apoptosis; on colony formation; and in scratch wound healing assays. The study has identified a panel of novel fisetin analogs that are either single- or multi-kinase inhibitors, which may be further developed as active for the treatment of melanoma and non-melanoma skin cancers. The dataset presented herein will be utilized for additional studies aiming to establish a biological platform to steer for predictive and experimental screening of novel flavonoids and analogs in relevant organoids, humanized animal models and in vivo disease models. The present results should also serve as a key stepping-stone towards enabling target-structure-based design, synthesis and initial testing of novel analogs or derivatives of fisetin. The current study may eventually lead to the development of safe, promising and preclinical candidate entities for treatment of skin and other forms of cancers as well as various other human diseases, which can possibly add to the general armamentarium of promising and safe drugs for health promotion.

3.
Bioorg Chem ; 107: 104595, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450548

RESUMO

Due to hurdles, including resistance, adverse effects, and poor bioavailability, among others linked with existing therapies, there is an urgent unmet need to devise new, safe, and more effective treatment modalities for skin cancers. Herein, a series of flavonol-based derivatives of fisetin, a plant-based flavonoid identified as an anti-tumorigenic agent targeting the mammalian targets of rapamycin (mTOR)-regulated pathways, were synthesized and fully characterized. New potential inhibitors of receptor tyrosine kinases (c-KITs), cyclin-dependent kinase-2 (CDK2), and mTOR, representing attractive therapeutic targets for melanoma and non-melanoma skin cancers (NMSCs) treatment, were identified using inverse-docking, in vitro kinase activity and various cell-based anticancer screening assays. Eleven compounds exhibited significant inhibitory activities greater than the parent molecule against four human skin cancer cell lines, including melanoma (A375 and SK-Mel-28) and NMSCs (A431 and UWBCC1), with IC50 values ranging from 0.12 to < 15 µM. Seven compounds were identified as potentially potent single, dual or multi-kinase c-KITs, CDK2, and mTOR kinase inhibitors after inverse-docking and screening against twelve known cancer targets, followed by kinase activity profiling. Moreover, the potent compound F20, and the multi-kinase F9 and F17 targeted compounds, markedly decreased scratch wound closure, colony formation, and heightened expression levels of key cancer-promoting pathway molecular targets c-Kit, CDK2, and mTOR. In addition, these compounds downregulated Bcl-2 levels and upregulated Bax and cleaved caspase-3/7/8 and PARP levels, thus inducing apoptosis of A375 and A431 cells in a dose-dependent manner. Overall, compounds F20, F9 and F17, were identified as promising c-Kit, CDK2 and mTOR inhibitors, worthy of further investigation as therapeutics, or as adjuvants to standard therapies for the control of melanoma and NMSCs.


Assuntos
Antineoplásicos/farmacologia , Flavonóis/farmacologia , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Flavonóis/síntese química , Flavonóis/química , Humanos , Melanoma/metabolismo , Melanoma/patologia , Estrutura Molecular , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA