Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 142(10): 101922, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770511

RESUMO

Supra-molecular self-assembly on surfaces often involves molecular conformational flexibility which may act to enrich the variation and complexity of the structures formed. However, systematic and explicit investigations of how molecular conformational states are selected in surface self-assembly processes are relatively scarce. Here, we use a combination of high-resolution scanning tunneling microscopy and Density Functional Theory (DFT) calculations to investigate self-assembly for a custom-designed molecule capable of assuming eight distinct surface conformations (four enantiomeric pairs). The conformations result from binary positions of n = 3 naphtalene units on a linear oligo(naphthylene-ethynylene) backbone. On Au(111), inter-molecular interactions involving carboxyl and bulky tert-butyl-phenyl functional groups induce the molecules to form two ordered phases with brick-wall and lamella structure, respectively. These structures each involve molecules in two conformational states, and there is a clear separation between the conformers involved in the two types of structures. On Cu(111), individual molecules isolated by carboxylate-substrate binding show a distribution involving all possible conformational states. Together these observations imply selection and adaptation of conformational states upon molecular self-assembly. From DFT modeling and statistical analysis of the molecular conformations, the observed selection of conformational states is attributed to steric interaction between the naphthalene units. The present study enhances our understanding of how ordering and selection of molecular conformations is controlled by intermolecular interactions in a complex situation with many distinct conformational states for the participating molecules.

2.
Chem Commun (Camb) ; 50(73): 10619-21, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25073695

RESUMO

The co-adsorption of two molecular Landers equipped with functional groups capable of forming a complementary triple hydrogen-bonding motif is investigated with scanning tunneling microscopy and molecular mechanics calculations. Surprisingly, the anticipated complementary motif is not realised in 2-D terrace structures, but is observed in 1-D structures at step edges where molecular conformational flexibility is confined.

3.
Phys Rev Lett ; 110(14): 146101, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167009

RESUMO

The water-TiO(2) interaction is of paramount importance for many processes occurring on TiO(2), and the rutile TiO(2)(110)-(1×1) surface has often been considered as a test case. Yet, no consensus has been reached whether the well-studied surface O vacancies on the terraces are the only active sites for water dissociation on rutile TiO(2)(110)-(1 × 1), or whether another channel for the creation of H adatoms exists. Here we use high-resolution scanning tunneling microscopy and density functional theory calculations to tackle this long-standing question. Evidence is presented that a second water dissociation channel exists on the surfaces of vacuum-annealed TiO(2)(110) crystals that is associated with the ⟨111⟩ step edges. This second water dissociation channel can be suppressed by blocking of the ⟨111⟩ step edges using ethanol.

4.
Phys Rev Lett ; 109(15): 155501, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102329

RESUMO

The rutile TiO2(110) surface is the most studied surface of titania and considered as a prototype of transition metal oxide surfaces. Reactions on flat TiO2(110)-(1×1) surfaces are well studied, but the processes occurring on the step edges have barely been considered. Based on scanning tunneling microscopy studies, we here present experimental evidence for the existence of O vacancies along the [11¯1](R) step edges (O(S) vac.'s) on rutile TiO(2)(110). Both the distribution of bridging O vacancies on the terraces and temperature-programed reaction experiments of ethanol-covered TiO(2)(110) point to the existence of the O(S) vac.'s. Based on experiments and density functional theory calculations, we show that O(S) vac.'s are reactive sites for ethanol dissociation via O-H bond scission. Implications of these findings are discussed.

5.
Phys Rev Lett ; 107(13): 136102, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026875

RESUMO

We have studied the interaction of ethanol with reduced TiO(2)(110)-(1 × 1) by high-resolution scanning tunneling microscopy (STM) measurements and density functional theory calculations. The STM data revealed direct evidence for the coexistence of molecularly and dissociatively adsorbed ethanol species on surface Ti sites. In addition, we found evidence for dissociation of ethanol at bridge-bonded O vacancies. The density functional theory calculations support these findings and rationalize the distinct diffusion behaviors of molecularly and dissociatively adsorbed ethanol species, as revealed in time-lapsed STM images.

6.
J Chem Phys ; 133(22): 224702, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21171691

RESUMO

Violet Lander (C(108)H(104)) is a large organic molecule that when deposited on Cu(110) surface exhibits lock-and-key like behavior [Otero et al., Nature Mater. 3, 779 (2004)]. In this work, we report a detailed fully atomistic molecular mechanics and molecular dynamics study of this phenomenon. Our results show that it has its physical basis on the interplay of the molecular hydrogens and the Cu(110) atomic spacing, which is a direct consequence of the matching between molecule and surface dimensions. This information could be used to find new molecules capable of displaying lock-and-key behavior with new potential applications in nanotechnology.

7.
Phys Rev Lett ; 102(22): 226101, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19658879

RESUMO

From an interplay of time-lapsed high resolution scanning tunneling microscopy and density functional theory calculations we reveal the formation and diffusion of water dimers on hydrated rutile TiO2(110)-(1x1) surfaces, i.e., surfaces containing OH_{br} groups. At temperatures between approximately 150 and approximately 210 K water monomers diffusing along the Ti troughs were found to form stable water dimers that diffuse faster than the water monomers. An H bond mediated rollover mechanism operating for the water dimers explains the experimental findings.

8.
Phys Rev Lett ; 100(11): 116104, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18517801

RESUMO

Time-resolved scanning tunneling microscopy (STM) is used to investigate a massive sulfur-induced transformation of a homogeneous array of approximately 2 nm Co nanoparticles into a new cobalt sulfide phase. The underlying atomistic mass-transport process is revealed and, surprisingly, found to be mediated exclusively by the formation and detachment of monosized Co3S4 complexes at the perimeter of the Co nanoparticles. The process is followed by fast diffusion, agglomeration of the complexes, and subsequent crystallization into a cobalt sulfide phase.

9.
Phys Rev Lett ; 100(4): 046103, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18352306

RESUMO

2,6-naphthalene-dicarboxylic acid was adsorbed on a Ag110 surface with an average terrace width of only some tens of a nm. Scanning tunneling microscopy shows that the adsorbates self-assemble into one-dimensional mesoscale length chains. These extend over several hundred nanometers and thus the structure exhibits an unprecedented tolerance to monatomic surface steps. Density functional theory and x-ray photoelectron spectroscopy explain the behavior by a strong intermolecular hydrogen bond plus a distinct template-mediated directionality and a high degree of molecular backbone flexibility.

10.
Phys Chem Chem Phys ; 9(27): 3460-9, 2007 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-17612714

RESUMO

A high-pressure scanning tunneling microscope (HP-STM) enabling imaging with atomic resolution over the entire pressure range from ultrahigh vacuum (UHV) to one bar has been developed. By means of this HP-STM we have studied the adsorption of hydrogen on Cu(110), CO on Pt(110) and Pt(111), and NO on Pd(111) at high pressures. For all of these adsorption systems we find that the adsorption structures formed at high pressures are identical to high-coverage structures formed at lower pressures and temperatures. We thus conclude that for these systems the so-called pressure gap can be bridged, i.e. the results obtained under conventional surface science conditions can be extrapolated to higher pressures. Finally, we use the HP-STM to image the CO-induced phase separation of a Au/Ni(111) surface alloy in real time, whereby demonstrating the importance of catalyst stability in the study of bimetallic systems.

11.
Phys Rev Lett ; 98(11): 115501, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17501062

RESUMO

Scanning tunneling microscopy shows that a nanopattern forms as the Pt(110)-(1 x 2) surface is exposed to oxygen at room temperature or above. The nanopattern consists of [11[over]0] oriented O-induced stripes assembling into a (11 x 2) superstructure at high O coverage. The stripes form because the O adsorption energy increases by expanding the Pt lattice along the ridges of the surface as compared to the bulk. From interplay with density functional theory calculations, we show that the O-induced nanoscale periodicity is caused by short-ranged elastic relaxations confined to the surface.

12.
Science ; 315(5819): 1692-6, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17379802

RESUMO

We studied the nucleation of gold clusters on TiO2(110) surfaces in three different oxidation states by high-resolution scanning tunneling microscopy. The three TiO2(110) supports chosen were (i) reduced (having bridging oxygen vacancies), (ii) hydrated (having bridging hydroxyl groups), and (iii) oxidized (having oxygen adatoms). At room temperature, gold nanoclusters nucleate homogeneously on the terraces of the reduced and oxidized supports, whereas on the hydrated TiO2(110) surface, clusters form preferentially at the step edges. From interplay with density functional theory calculations, we identified two different gold-TiO2(110) adhesion mechanisms for the reduced and oxidized supports. The adhesion of gold clusters is strongest on the oxidized support, and the implications of this finding for catalytic applications are discussed.

13.
Phys Rev Lett ; 97(18): 186102, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-17155556

RESUMO

We present scanning tunneling microscopy experiments and density functional theory calculations which reveal a unique mechanism for the formation of hydrogen adsorbate clusters on graphite surfaces. Our results show that diffusion of hydrogen atoms is largely inactive and that clustering is a consequence of preferential sticking into specific adsorbate structures. These surprising findings are caused by reduced or even vanishing adsorption barriers for hydrogen in the vicinity of already adsorbed H atoms on the surface and point to a possible novel route to interstellar H2 formation.

14.
Phys Rev Lett ; 96(14): 146101, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16712097

RESUMO

Scanning tunneling microscopy (STM) and density-functional theory are used to reexamine the structure of the renowned p(4 x 4)-O/Ag(111) surface oxide. The accepted structural model [C. I. Carlisle, Phys. Rev. Lett. 84, 3899 (2000)10.1103/PhysRevLett.84.3899] is incompatible with the enhanced resolution of the current STM measurements. An "Ag6 model" is proposed that is more stable than its predecessor and accounts for the coexistence of the p(4 x 4) and a novel c(3 x 5log3)rect phase. This coexistence is an indication of the dynamic complexity of the system that until now has not been appreciated.

15.
Phys Rev Lett ; 96(15): 156104, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16712173

RESUMO

We present scanning tunneling microscopy results which reveal the existence of two distinct hydrogen dimer states on graphite basal planes. Density functional theory calculations allow us to identify the atomic structure of these states and to determine their recombination and desorption pathways. Direct recombination is only possible from one of the two dimer states. This results in increased stability of one dimer species and explains the puzzling double peak structure observed in temperature programmed desorption spectra for hydrogen on graphite.

16.
Phys Rev Lett ; 96(6): 066107, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16606018

RESUMO

A combination of high-resolution scanning tunneling microscopy and density functional theory is utilized to study the interaction of water with the reduced TiO2(110)-(1 x 1) surface. As the direct product of water dissociation in oxygen vacancies, paired hydroxyl groups are formed. These pairs are immobile and stable unless they interact with adsorbed water molecules. As a result of these interactions, protons are transferred to adjacent oxygen rows, thereby forming single hydroxyl groups. Additionally, we show that hydroxyl groups facilitate the diffusion of water molecules over the oxygen rows.

17.
Phys Rev Lett ; 93(14): 146104, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524816

RESUMO

Using scanning tunneling microscopy and temperature programmed desorption we investigate the Pt(110) surface under strongly oxidizing conditions involving either high-pressure O2 or atomic oxygen exposure. At low temperatures, only disordered Pt oxide structures are observed. After annealing ordered surface oxide islands are observed to coexist with a highly stable reconstructed (12x2)-O chemisorption structure. From density functional theory calculations a model for the surface oxide phase is revealed. The phase is found to be metastable, and its presence is explained in terms of stabilizing defects in the chemisorption layer and reduced Pt mobility.

18.
Phys Rev Lett ; 90(2): 026101, 2003 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-12570557

RESUMO

Through an interplay between scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we show that bridging oxygen vacancies are the active nucleation sites for Au clusters on the rutile TiO2(110) surface. We find that a direct correlation exists between a decrease in density of vacancies and the amount of Au deposited. From the DFT calculations we find that the oxygen vacancy is indeed the strongest Au binding site. We show both experimentally and theoretically that a single oxygen vacancy can bind 3 Au atoms on average. In view of the presented results, a new growth model for the TiO2(110) system involving vacancy-cluster complex diffusion is presented.

20.
Phys Rev Lett ; 88(20): 206106, 2002 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12005584

RESUMO

The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations, the simulations can be used to determine dislocation structure and orientation in the near-surface region. In a similar way, the subsurface structure of other extended defects can be studied. The simulations show dislocations to reorient the partials in the surface region leading to an increased splitting width at the surface, in agreement with the STM observations. Implications for surface-induced cross slip are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA