Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 63(12): 830-834, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28372605

RESUMO

The Biochemistry Department at the University of Geneva currently has four full professors, a professor emeritus, one assistant professor, two MER (Maître d'enseignement et de Recherche) and a permanent scientific collaborator. The research interests of the members of the Biochemistry Department are described.

2.
Mol Cell ; 31(6): 925-32, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18922474

RESUMO

The anchor-away (AA) technique depletes the nucleus of Saccharomyces cerevisiae of a protein of interest (the target) by conditional tethering to an abundant cytoplasmic protein (the anchor) by appropriate gene tagging and rapamycin-dependent heterodimerization. Taking advantage of the massive flow of ribosomal proteins through the nucleus during maturation, a protein of the large subunit was chosen as the anchor. Addition of rapamycin, due to formation of the ternary complex, composed of the anchor, rapamycin, and the target, then results in the rapid depletion of the target from the nucleus. All 43 tested genes displayed on rapamycin plates the expected defective growth phenotype. In addition, when examined functionally, specific mutant phenotypes were obtained within minutes. These are genes involved in protein import, RNA export, transcription, sister chromatid cohesion, and gene silencing. The AA technique is a powerful tool for nuclear biology to dissect the function of individual or gene pairs in synthetic, lethal situations.


Assuntos
Técnicas Genéticas , Mutagênese , Saccharomyces cerevisiae/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Proliferação de Células/efeitos dos fármacos , Genes Fúngicos , Teste de Complementação Genética , Mutagênese/efeitos dos fármacos , Fenótipo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
3.
EMBO J ; 25(11): 2397-408, 2006 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-16675949

RESUMO

The functions of DNA satellites of centric heterochromatin are difficult to assess with classical molecular biology tools. Using a chemical approach, we demonstrate that synthetic polyamides that specifically target AT-rich satellite repeats of Drosophila melanogaster can be used to study the function of these sequences. The P9 polyamide, which binds the X-chromosome 1.688 g/cm3 satellite III (SAT III), displaces the D1 protein. This displacement in turn results in a selective loss of HP1 and topoisomerase II from SAT III, while these proteins remain bound to the adjacent rDNA repeats and to other regions not targeted by P9. Conversely, targeting of (AAGAG)n satellite V repeats by the P31 polyamide results in the displacement of HP1 from these sequences, indicating that HP1 interactions with chromatin are sensitive to DNA-binding ligands. P9 fed to larvae suppresses the position-effect variegation phenotype of white-mottled adult flies. We propose that this effect is due to displacement of the heterochromatin proteins D1, HP1 and topoisomerase II from SAT III, hence resulting in stochastic chromatin opening and desilencing of the nearby white gene.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Satélite/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Heterocromatina/genética , Nylons/metabolismo , Sequência Rica em At , Animais , Sequência de Bases , Encéfalo/fisiologia , Proteínas Cromossômicas não Histona/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Estruturas Embrionárias/fisiologia , Feminino , Heterocromatina/metabolismo , Dados de Sequência Molecular , Nylons/química , Células Fotorreceptoras de Invertebrados/anatomia & histologia , Células Fotorreceptoras de Invertebrados/fisiologia
4.
Mol Cell ; 21(3): 379-91, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16455493

RESUMO

Our previous work identified the inner basket of the NPC as a physical activation/protection station for force-tethered, epigenetically silenced genes. Here we show that a specific nucleopore-to-gene-promoter interaction (Nup-PI) is an early physiological event of gene activation. Nup-PI was discovered with chromatin endogenous cleavage (ChEC) experiments that mapped in vivo the genomic interaction sites of the nucleoporin Nup2p fused to microccocal nuclease (Nup2-MN). Strong Nup-PI, cleavage by Nup2-MN, is observed at the promoters of the GAL genes and at HXK1 upon activation of these genes with galactose. Nup-PI at the GAL locus requires Gal4p and the UASg and TATA box elements but not SAGA and active transcription. The physical, activation-dependent interaction of the GAL locus with the NPC basket was confirmed by imaging. Chromosome-wide ChEC studies indicated that Nup-PI occurs at numerous genes. The data identify the NPC basket as a new, integral participant in gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Cromossomos Fúngicos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Ativação Transcricional
5.
Chromosoma ; 114(5): 365-75, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16175370

RESUMO

To structurally dissect mitotic chromosomes, we aim to position along the folded chromatin fiber proteins involved in long-range order, such as topoisomerase IIalpha (topoIIalpha) and condensin. Immuno-electron microscopy (EM) of thin-sectioned chromosomes is the method of choice toward this goal. A much-improved immunoprocedure that avoids problems associated with aldehyde fixation, such as chemical translinking and networking of chromatin fibers, is reported here. We show that ultraviolet irradiation of isolated nuclei or chromosomes facilitates high-level specific immunostaining, as established by fluorescence microscopy with a variety of antibodies and especially by immuno-EM. Ultrastructural localizations of topoIIalpha and condensin I component hBarren (hBar; hCAP-H) in mitotic chromosomes were studied by immuno-EM. We show that the micrographs of thin-sectioned chromosomes map topoIIalpha and hBar to the center of the chromosomal body where the chromatin fibers generally converge. This localization is defined by many clustered gold particles with only rare individual particles in the peripheral halo. The data obtained are consistent with the view that condensin and perhaps topoIIalpha tether chromatin to loops according to a scaffolding-type model.


Assuntos
Estruturas Cromossômicas/ultraestrutura , Imuno-Histoquímica/métodos , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Estruturas Cromossômicas/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica/métodos , Mitose , Nanotecnologia/métodos , Proteínas Nucleares/metabolismo , Timopoietinas/metabolismo , Raios Ultravioleta
6.
Mol Cell ; 16(1): 147-57, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15469830

RESUMO

To map the genomic interaction sites of chromatin proteins, two related methods were developed and experimentally explored in Saccharomyces cerevisiae. The ChIC method (chromatin immunocleavage) consists of tethering a fusion protein (pA-MN) consisting of micrococcal nuclease (MN) and staphylococcal protein A to specifically bound antibodies. The nuclease is kept inactive during the tethering process (no Ca2+). The ChEC method (chromatin endogenous cleavage) consists of expressing fusion proteins in vivo, where MN is C-terminally fused to the proteins of interest. The specifically tethered nucleases are activated with Ca2+ ions to locally introduce double-stranded DNA breaks. We demonstrate that ChIC and ChEC map proteins with a 100-200 bp resolution and excellent specificity. One version of the method is applicable to formaldehyde-fixed nuclei, another to native cells with comparable results. Among various model experiments, these methods were used to address the conformation of yeast telomeres.


Assuntos
Anticorpos , Proteínas Cromossômicas não Histona/metabolismo , Nuclease do Micrococo , Mapeamento de Interação de Proteínas/métodos , Saccharomyces cerevisiae/genética , Proteína Estafilocócica A , Especificidade de Anticorpos , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Telômero/metabolismo
7.
Dev Cell ; 4(4): 467-80, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12689587

RESUMO

Topoisomerase IIalpha (topoIIalpha) and 13S condensin are both required for mitotic chromosome assembly. Here we show that they constitute the two main components of the chromosomal scaffold on histone-depleted chromosomes. The structural stability and chromosomal shape of the scaffolding toward harsh extraction procedures are shown to be mediated by ATP or its nonhydrolyzable analogs, but not ADP. TopoIIalpha and 13S condensin components immunolocalize to a radially restricted, longitudinal scaffolding in native-like chromosomes. Double staining for topoIIalpha and condensin generates a barber pole appearance of the scaffolding, where topoIIalpha- and condensin-enriched "beads" alternate; this structure appears to be generated by two juxtaposed, or coiled, chains. Cell cycle studies establish that 13S condensin appears not to be involved in the assembly of prophase chromatids; they lack this complex but contain a topoIIalpha-defined (-mediated?) scaffolding. Condensin associates only during the pro- to metaphase transition. This two-step assembly process is proposed to generate the barber pole appearance of the native-like scaffolding.


Assuntos
Adenosina Trifosfatases/genética , Núcleo Celular/enzimologia , Cromossomos/enzimologia , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Células Eucarióticas/enzimologia , Mitose/genética , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Antígenos de Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cromátides/genética , Cromátides/ultraestrutura , Cromossomos/ultraestrutura , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Eucarióticas/ultraestrutura , Imunofluorescência , Células HeLa , Humanos , Microtomia , Modelos Biológicos , Estrutura Molecular , Complexos Multiproteicos , Prófase/genética
8.
Mol Cell ; 11(1): 237-48, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12535536

RESUMO

Drosophila and mammalian proteins protect genes from heterochromatic repression in Saccharomyces cerevisiae by two different mechanisms. Factors termed genuine boundary activities (BAs) establish a structural, unidirectional bulwark against heterochromatin. In contrast, factors termed desilencing activities (DAs) act by the formation of a bidirectional, euchromatic island that blocks spreading of heterochromatin. The Drosophila boundary protein BEAF and, unexpectedly, the mammalian factor Sp1 exhibited a robust BA in yeast. In contrast, mammalian CTCF, Drosophila GAGA factor, yeast Gcn5p, and many mammalian transcription factors, although inactive as upregulators of nonsilenced genes, work as DAs. DAs but not BAs protect telomere-linked genes from silencing, presumably due to looping of telomeres and ensuing multidirectional silencing. The data demonstrate that "genetic autonomy" of chromatin domains is established by both passive and active mechanisms.


Assuntos
Drosophila melanogaster/genética , Regulação Fúngica da Expressão Gênica , Heterocromatina/metabolismo , Proteínas Repressoras , Saccharomyces cerevisiae/genética , Transcrição Gênica , Animais , Fator de Ligação a CCCTC , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Inativação Gênica , Genes Fúngicos , Genes de Insetos , Genes Reporter , Heterocromatina/química , Heterocromatina/genética , Humanos , Modelos Genéticos , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição Sp1/metabolismo , Telômero/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Chromosoma ; 110(8): 519-31, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12068969

RESUMO

The insulating properties required to delimit higher-order chromosomal domains have been shown to be shared by a variety of chromatin boundary elements (BEs). Boundary elements have been described in several species, from yeast to human, and we have previously reported the existence of a class of chromatin BEs in Drosophila melanogaster whose insulating activity requires the DNA-binding protein BEAF (boundary element-associated factor). Here we focus on the characterization of a moderately repeated 1.2 kb DNA sequence that encompasses boundary element 28 (BE28). We show that it directionally blocks enhancer/promoter communication in transgenic flies. This sequence contains a BEAF-binding sequence juxtaposed to an AT-rich sequence that harbors a strong nuclease-hypersensitive site. Using a combination of DNA-protein and protein blotting techniques, we found that this region is recognized by the A+T-binding D1 non-histone chromosomal protein of D. melanogaster, and we provide evidence that D1 and BEAF physically interact. In addition, the multicopy BE28 element maps to pericentric regions of the D. melanogaster 2L, 2R and X chromosome arms to which D1 has been shown to localize. In yeast, BEs that mark the periphery of silenced chromosomal domains have recently been shown to block the spreading of heterochromatin assembly. We propose that the BE28 repeat clusters could fulfill a similar function, acting as a local boundary between hetero- and euchromatin in a process involving interactions between the BEAF and D1 proteins.


Assuntos
Cromatina , Drosophila melanogaster/genética , Dosagem de Genes , Inativação Gênica , Sequência Rica em At , Animais , Sítios de Ligação , Mapeamento Cromossômico , Elementos Facilitadores Genéticos , Hibridização In Situ
10.
Cell ; 109(5): 551-62, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-12062099

RESUMO

Chromatin boundary activities (BAs) were identified in Saccharomyces cerevisiae by genetic screening. Such BAs bound to sites flanking a reporter gene establish a nonsilenced domain within the silent mating-type locus HML. Interestingly, various proteins involved in nuclear-cytoplasmic traffic, such as exportins Cse1p, Mex67p, and Los1p, exhibit a robust BA. Genetic studies, immunolocalization, live imaging, and chromatin immunoprecipitation experiments show that these transport proteins block spreading of heterochromatin by physical tethering of the HML locus to the Nup2p receptor of the nuclear pore complex. Genetic deletion of NUP2 abolishes the BA of all transport proteins, while direct targeting of Nup2p to the bracketing DNA elements restores activity. The data demonstrate that physical tethering of genomic loci to the NPC can dramatically alter their epigenetic activity.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Proteínas de Transporte/genética , Cromatina/genética , Genes/genética , Poro Nuclear/genética , Proteínas Nucleares , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Reporter/genética , Testes Genéticos , Biblioteca Genômica , Região de Controle de Locus Gênico/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Cell Biol ; 22(4): 1218-32, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11809812

RESUMO

We have analyzed the expression pattern of the D1 gene and the localization of its product, the AT hook-bearing nonhistone chromosomal protein D1, during Drosophila melanogaster development. D1 mRNAs and protein are maternally contributed, and the protein localizes to discrete foci on the chromosomes of early embryos. These foci correspond to 1.672- and 1.688-g/cm(3) AT-rich satellite repeats found in the centromeric heterochromatin of the X and Y chromosomes and on chromosomes 3 and 4. D1 mRNA levels subsequently decrease throughout later development, followed by the accumulation of the D1 protein in adult gonads, where two distributions of D1 can be correlated to different states of gene activity. We show that the EP473 mutation, a P-element insertion upstream of D1 coding sequences, affects the expression of the D1 gene and results in an embryonic homozygous lethal phenotype correlated with the depletion of D1 protein during embryogenesis. Remarkably, decreased levels of D1 mRNA and protein in heterozygous flies lead to the suppression of position-effect variegation (PEV) of the white gene in the white-mottled (w(m4h)) X-chromosome inversion. Our results identify D1 as a DNA-binding protein of known sequence specificity implicated in PEV. D1 is the primary factor that binds the centromeric 1.688-g/cm(3) satellite repeats which are likely involved in white-mottled variegation. We propose that the AT-hook D1 protein nucleates heterochromatin assembly by recruiting specialized transcriptional repressors and/or proteins involved in chromosome condensation.


Assuntos
DNA Satélite/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Animais , Composição de Bases , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Cor de Olho , Feminino , Gametogênese , Genes de Insetos , Heterocromatina/genética , Heterocromatina/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Células Fotorreceptoras de Invertebrados/fisiologia , Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA