Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Appl Clin Med Phys ; 25(5): e14329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38497567

RESUMO

PURPOSE: Histotripsy is a nonionizing, noninvasive, and nonthermal focal tumor therapy. Cone-beam computed tomography (CBCT) guidance was developed for targeting tumors not visible on ultrasound. This approach assumes cavitation is formed at the geometrical focal point of the therapy transducer. In practice, the exact location might vary slightly between transducers. In this study, we present a phantom with an embedded target to evaluate CBCT-guided histotripsy accuracy and assess the completeness of treatments. METHODS: Spherical (2.8 cm) targets with alternating layers of agar and radiopaque barium were embedded in larger phantoms with similar layers. The layer geometry was designed so that targets were visible on pre-treatment CBCT scans. The actual histotripsy treatment zone was visualized via the mixing of adjacent barium and agar layers in post-treatment CBCT images. CBCT-guided histotripsy treatments of the targets were performed in six phantoms. Offsets between planned and actual treatment zones were measured and used for calibration refinement. To measure targeting accuracy after calibration refinement, six additional phantoms were treated. In a separate investigation, two groups (N = 3) of phantoms were treated to assess visualization of incomplete treatments ("undertreatment" group: 2 cm treatment within 2.8 cm tumor, "mistarget" group: 2.8 cm treatment intentionally shifted laterally). Treatment zones were segmented (3D Slicer 5.0.3), and the centroid distance between the prescribed target and actual treatment zones was quantified. RESULTS: In the calibration refinement group, a 2 mm offset in the direction of ultrasound propagation (Z) was measured. After calibration refinement, the centroid-to-centroid distance between prescribed and actual treatment volumes was 0.5 ± 0.2 mm. Average difference between the prescribed and measured treatment sizes in the incomplete treatment groups was 0.5 ± 0.7 mm. In the mistarget group, the distance between prescribed and measured shifts was 0.2 ± 0.1 mm. CONCLUSION: The proposed prototype phantom allowed for accurate measurement of treatment size and location, and the CBCT visible target provided a simple way to detect misalignments for preliminary quality assurance of CBCT-guided histotripsy.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia
2.
J Vasc Interv Radiol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508448

RESUMO

PURPOSE: To develop a noninvasive therapeutic approach able to alter the biophysical organization and physiology of the extracellular matrix (ECM) in breast cancer. MATERIALS AND METHODS: In a 4T1 murine model of breast cancer, histoplasty treatment with a proprietary 700-kHz multielement therapy transducer using a coaxially aligned ultrasound (US) imaging probe was used to target the center of an ex vivo tumor and deliver subablative acoustic energy. Tumor collagen morphology was qualitatively evaluated before and after histoplasty with second harmonic generation. Separately, mice bearing bilateral 4T1 tumors (n = 4; total tumors = 8) were intravenously injected with liposomal doxorubicin. The right flank tumor was histoplasty-treated, and tumors were fluorescently imaged to detect doxorubicin uptake after histoplasty treatment. Next, 4T1 tumor-bearing mice were randomized into 2 treatment groups (sham vs histoplasty, n = 3 per group). Forty-eight hours after sham/histoplasty treatment, tumors were harvested and analyzed using flow cytometry. RESULTS: Histoplasty significantly increased (P = .0023) liposomal doxorubicin diffusion into 4T1 tumors compared with untreated tumors (2.12- vs 1.66-fold increase over control). Flow cytometry on histoplasty-treated tumors (n = 3) demonstrated a significant increase in tumor macrophage frequency (42% of CD45 vs 33%; P < .05) and a significant decrease in myeloid-derived suppressive cell frequency (7.1% of CD45 vs 10.3%; P < .05). Histoplasty-treated tumors demonstrated increased CD8+ (5.1% of CD45 vs 3.1%; P = .117) and CD4+ (14.1% of CD45 vs 11.8%; P = .075) T-cell frequency. CONCLUSIONS: Histoplasty is a nonablative focused US approach to noninvasively modify the tumor ECM, increase chemotherapeutic uptake, and alter the tumor immune microenvironment.

3.
Med Phys ; 51(4): 2882-2892, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308822

RESUMO

BACKGROUND: Minimally invasive procedures usually require navigating a microcatheter and guidewire through endoluminal structures such as blood vessels and airways to sites of the disease. For numerous clinical applications, two-dimensional (2D) fluoroscopy is the primary modality used for real-time image guidance during navigation. However, 2D imaging can pose challenges for navigation in complex structures. Real-time 3D visualization of devices within the anatomic context could provide considerable benefits for these procedures. Continuous-sweep limited angle (CLA) fluoroscopy has recently been proposed to provide a compromise between conventional rotational 3D acquisitions and real-time fluoroscopy. PURPOSE: The purpose of this work was to develop and evaluate a noniterative 3D device reconstruction approach for CLA fluoroscopy acquisitions, which takes into account endoluminal topology to avoid impossible paths between disconnected branches. METHODS: The algorithm relies on a static 3D roadmap (RM) of vessels or airways, which may be generated from conventional cone beam CT (CBCT) acquisitions prior to navigation. The RM is converted to a graph representation describing its topology. During catheter navigation, the device is segmented from the live 2D projection images using a deep learning approach from which the centerlines are extracted. Rays from the focal spot to detector pixels representing 2D device points are identified and intersections with the RM are computed. Based on the RM graph, a subset of line segments is selected as candidates to exclude device paths through disconnected branches of the RM. Depth localization for each point along the device is then performed by finding the point closest to the previous 3D reconstruction along the candidate segments. This process is repeated as the projection angle changes for each CLA image frame. The approach was evaluated in a phantom study in which a catheter and guidewire were navigated along five pathways within a complex vessel phantom. The result was compared to static cCBCT acquisitions of the device in the final position. RESULTS: The average root mean squared 3D distance between CLA reconstruction and reference centerline was 1.87 ± 0.30 $1.87 \pm 0.30$ mm. The Euclidean distance at the device tip was 2.92 ± 2.35 $2.92 \pm 2.35$ mm. The correct pathway was identified during reconstruction in 100 % $100\%$ of frames ( n = 1475 $n=1475$ ). The percentage of 3D device points reconstructed inside the 3D roadmap was 91.83 ± 2.52 % $91.83 \pm 2.52\%$ with an average distance of 0.62 ± 0.30 $0.62 \pm 0.30$ mm between the device points outside the roadmap and the nearest point within the roadmap. CONCLUSIONS: This study demonstrates the feasibility of reconstructing curvilinear devices such as catheters and guidewires during endoluminal procedures including intravascular and transbronchial interventions using a noniterative reconstruction approach for CLA fluoroscopy. This approach could improve device navigation in cases where the structure of vessels or airways is complex and includes overlapping branches.


Assuntos
Catéteres , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico , Fluoroscopia/métodos
4.
Radiol Imaging Cancer ; 6(2): e230080, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334471

RESUMO

Purpose To determine if microwave ablation (MWA) of retroperitoneal tumors can safely provide high rates of local tumor control. Materials and Methods This retrospective study included 19 patients (median age, 65 years [range = 46-78 years]; 13 [68.4%] men and six [31.6%] women) with 29 retroperitoneal tumors treated over 22 MWA procedures. Hydrodissection (0.9% saline with 2% iohexol) was injected in 17 of 22 (77.3%) procedures to protect nontarget anatomy. The primary outcomes evaluated were local tumor progression (LTP) and complication rates. Oncologic outcomes, including overall survival (OS), progression-free survival (PFS), and treatment-free interval (TFI), were examined as secondary outcome measures. Results Median follow-up was 18 months (range = 0.5-113). Hydrodissection was successful in displacing nontarget anatomy in 16 of 17 (94.1%) procedures. The LTP rate was 3.4% (one of 29; 95% CI: 0.1, 17.8) per tumor and 5.3% (one of 19; 95% CI: 0.1, 26.0) per patient. The overall complication rate per patient was 15.8% (three of 19), including two minor complications and one major complication. The OS rate at 1, 2, and 3 years was 81.8%, 81.8%, and 72.7%, respectively, with a median OS estimated at greater than 7 years. There was no evidence of a difference in OS (P = .34) and PFS (P = .56) between patients with renal cell carcinoma (six of 19 [31.6%]) versus other tumors (13 of 19 [68.4%]) and patients treated with no evidence of disease (15 of 22 [68.2%]) versus patients with residual tumors (seven of 22 [31.8%]). Median TFI was 18 months (range = 0.5-108). Conclusion Treatment of retroperitoneal tumors with MWA combined with hydrodissection provided high rates of local control, prolonged systemic therapy-free intervals, and few serious complications. Keywords: Ablation Techniques (ie, Radiofrequency, Thermal, Chemical), Retroperitoneum, Microwave Ablation, Hydrodissection © RSNA, 2024.


Assuntos
Neoplasias Renais , Neoplasias Retroperitoneais , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Neoplasias Retroperitoneais/diagnóstico por imagem , Neoplasias Retroperitoneais/radioterapia , Neoplasias Retroperitoneais/cirurgia , Resultado do Tratamento , Micro-Ondas/uso terapêutico , Estudos Retrospectivos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/cirurgia
5.
J Med Imaging (Bellingham) ; 11(1): 013501, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188936

RESUMO

Purpose: Quantitative monitoring of flow-altering interventions has been proposed using algorithms that quantify blood velocity from time-resolved two-dimensional angiograms. These algorithms track the movement of contrast oscillations along a vessel centerline. Vessel motion may occur relative to a statically defined vessel centerline, corrupting the blood velocity measurement. We provide a method for motion-compensated blood velocity quantification. Approach: The motion-compensation approach utilizes a vessel segmentation algorithm to perform frame-by-frame vessel registration and creates a dynamic vessel centerline that moves with the vasculature. Performance was evaluated in-vivo through comparison with manually annotated centerlines. The method was also compared to a previous uncompensated method using best- and worst-case static centerlines chosen to minimize and maximize centerline placement accuracy. Blood velocities determined through quantitative DSA (qDSA) analysis for each centerline type were compared through linear regression analysis. Results: Centerline distance errors were 0.3±0.1 mm relative to gold standard manual annotations. For the uncompensated approach, the best- and worst-case static centerlines had distance errors of 1.1±0.6 and 2.9±1.2 mm, respectively. Linear regression analysis found a high R-squared between qDSA-derived blood velocities using gold standard centerlines and motion-compensated centerlines (R2=0.97) with a slope of 1.15 and a small offset of -0.6 cm/s. The use of static centerlines resulted in low coefficients of determination for the best case (R2=0.35) and worst-case (R2=0.20) scenarios, with slopes close to zero. Conclusions: In-vivo validation of motion-compensated qDSA analysis demonstrated improved velocity quantification accuracy in vessels with motion, addressing an important clinical limitation of the current qDSA algorithm.

6.
Med Phys ; 51(4): 2468-2478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37856176

RESUMO

BACKGROUND: Flow altering angiographic procedures suffer from ill-defined, qualitative endpoints. Quantitative digital subtraction angiography (qDSA) is an emerging technology that aims to address this issue by providing intra-procedural blood velocity measurements from time-resolved, 2D angiograms. To date, qDSA has used 30 frame/s DSA imaging, which is associated with high radiation dose rate compared to clinical diagnostic DSA (up to 4 frame/s). PURPOSE: The purpose of this study is to demonstrate an interleaved x-ray imaging method which decreases the radiation dose rate associated with high frame rate qDSA while simultaneously providing low frame rate diagnostic DSA images, enabling the acquisition of both datasets in a single image sequence with a single injection of contrast agent. METHODS: Interleaved x-ray imaging combines low radiation dose image frames acquired at a high rate with high radiation dose image frames acquired at a low rate. The feasibility of this approach was evaluated on an x-ray system equipped with research prototype software for x-ray tube control. qDSA blood velocity quantification was evaluated in a flow phantom study for two lower dose interleaving protocols (LD1: 3.7 ± 0.02 mGy / s $3.7 \pm 0.02\ {\mathrm{mGy}}/{\mathrm{s}}$ and LD2: 1.7 ± 0.04 mGy / s $1.7 \pm 0.04{\mathrm{\ mGy}}/{\mathrm{s}}$ ) and one conventional (full dose) protocol ( 11.4 ± 0.04 mGy / s ) $11.4 \pm 0.04{\mathrm{\ mGy}}/{\mathrm{s}})$ . Dose was measured at the interventional reference point. Fluid velocities ranging from 24 to 45 cm/s were investigated. Gold standard velocities were measured using an ultrasound flow probe. Linear regression and Bland-Altman analysis were used to compare ultrasound and qDSA. RESULTS: The LD1 and LD2 interleaved protocols resulted in dose rate reductions of -67.7% and -85.5%, compared to the full dose qDSA scan. For the full dose protocol, the Bland-Altman limits of agreement (LOA) between qDSA and ultrasound velocities were [0.7, 6.7] cm/s with a mean difference of 3.7 cm/s. The LD1 interleaved protocol results were similar (LOA: [0.3, 6.9] cm/s, bias: 3.6 cm/s). The LD2 interleaved protocol resulted in slightly larger LOA: [-2.5, 5.5] cm/s with a decrease in the bias: 1.5 cm/s. Linear regression analysis showed a strong correlation between ultrasound and qDSA derived velocities using the LD1 protocol, with a R 2 ${R}^2$ of 0.96 $0.96$ , a slope of 1.05 $1.05$ and an offset of 1.9 $1.9$  cm/s. Similar values were also found for the LD2 protocol, with a R 2 ${R}^2$ of 0.93 $0.93$ , a slope of 0.98 $0.98$ and an offset of 2.0 $2.0$  cm/s. CONCLUSIONS: The interleaved method enables simultaneous acquisition of low-dose high-rate images for intra-procedural blood velocity quantification (qDSA) and high-dose low-rate images for vessel morphology evaluation (diagnostic DSA).


Assuntos
Meios de Contraste , Angiografia Digital/métodos , Raios X , Doses de Radiação
7.
Med Phys ; 51(3): 1726-1737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37665770

RESUMO

BACKGROUND: Currently, determining procedural endpoints and treatment efficacy of vascular interventions is largely qualitative and relies on subjective visual assessment of digital subtraction angiography (DSA) images leading to large interobserver variabilities and poor reproducibility. Quantitative metrics such as the residual blood velocity in embolized vessel branches could help establish objective and reproducible endpoints. Recently, velocity quantification techniques based on a contrast enhanced X-ray sequence such as qDSA and 4D DSA have been proposed. These techniques must be robust, and, to avoid radiation dose concerns, they should be compatible with low dose per frame image acquisition. PURPOSE: To develop and evaluate a technique for robust blood velocity quantification from low dose contrast enhanced X-ray image sequences that leverages the oscillating signal created by pulsatile blood flow. METHODS: The proposed spatiotemporal frequency domain (STF) approach quantifies velocities from time attenuation maps (TAMs) representing the oscillating signal over time for all points along a vessel centerline. Due to the time it takes a contrast bolus to travel along the vessel centerline, the resulting TAM resembles a sheared sine wave. The shear angle is related to the velocity and can be determined in the spatiotemporal frequency domain after applying the 2D Fourier transform to the TAM. The approach was evaluated in a straight tube phantom using three different radiation dose levels and compared to ultrasound transit-time-based measurements. The STF velocity results were also compared to previously published approaches for the measurement of blood velocity from contrast enhanced X-ray sequences including shifted least squared (SLS) and phase shift (PHS). Additionally, an in vivo porcine study (n = 8) was performed where increasing amounts of embolic particles were injected into a hepatic or splenic artery with intermittent velocity measurements after each injection to monitor the resulting reduction in velocity. RESULTS: At the lowest evaluated dose level (average air kerma rate 1.3 mGy/s at the interventional reference point), the Pearson correlation between ultrasound and STF velocity measurements was 99 % $99\%$ . This was significantly higher ( p < 0.0001 $p < 0.0001$ ) than corresponding correlation results between ultrasound and the previously published SLS and PHS approaches ( 91 $\hskip.001pt 91$ and 93 % $93\%$ , respectively). In the in vivo study, a reduction in velocity was observed in 85.7 % $85.7\%$ of cases after injection of 1 mL, 96.4 % $96.4\%$ after 3 mL, and 100.0 % $100.0\%$ after 4 mL of embolic particles. CONCLUSIONS: The results show good agreement of the spatiotemporal frequency domain approach with ultrasound even in low dose per frame image sequences. Additionally, the in vivo study demonstrates the ability to monitor the physiological changes due to embolization. This could provide quantitative metrics during vascular procedures to establish objective and reproducible endpoints.


Assuntos
Embolização Terapêutica , Suínos , Animais , Reprodutibilidade dos Testes , Angiografia Digital/métodos , Ultrassonografia , Doses de Radiação , Velocidade do Fluxo Sanguíneo/fisiologia
8.
J Vasc Interv Radiol ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38141780

RESUMO

PURPOSE: To assess the feasibility of using quantitative digital subtraction angiography (qDSA) to quantify arterial velocity in phantom and porcine stenotic iliac artery models. MATERIALS AND METHODS: Varying stenoses (mild, <50%; moderate, 50%-70%; and severe, >70%) were created in a silicone iliac artery phantom using vessel loops. Two-dimensional digital subtraction angiographies (DSAs) were performed, with velocities calculated using qDSA. qDSA velocities were compared with flow rates and velocities measured with an ultrasonic flow probe. Two-dimensional DSAs of the common and external iliac arteries were then performed in 4 swine (mean weight, 63 kg) before and after a severe stenosis (>70%) was created in the iliac artery using 3-0 silk suture. Peak systolic velocities on pulsed wave Doppler ultrasound (US) before and after stenosis creation were correlated with the qDSA velocities. Pearson correlation, linear regression, and analysis of variance were used for analysis. RESULTS: In the phantom study, ultrasonic probe velocities positively correlated with downstream qDSA (r = 0.65; P < .001) and negatively correlated with peristenotic qDSA velocities (r = -0.80; P < .001). In the swine study, statistically significant reductions in external iliac arterial velocity were noted on US and qDSA after stenosis creation (P < .05). US and qDSA velocities strongly correlated for all flow states with both 50% and 100% contrast concentrations (r = 0.82 and r = 0.74, respectively), with an estimated US-to-qDSA ratio of 1.3-1.5 (P < .001). qDSA velocities with 50% and 100% contrast concentrations also strongly correlated (r = 0.78; P < .001). CONCLUSIONS: In both phantom and swine stenosis models, changes in iliac arterial velocity could be quantified with qDSA, which strongly correlated with standard-of-care US.

9.
Int J Hyperthermia ; 40(1): 2272065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37875279

RESUMO

Histotripsy is an emerging noninvasive, non-thermal, and non-ionizing focused ultrasound (US) therapy that can be used to destroy targeted tissue. Histotripsy has evolved from early laboratory prototypes to clinical systems which have been comprehensively evaluated in the preclinical environment to ensure safe translation to human use. This review summarizes the observations and results from preclinical histotripsy studies in the liver, kidney, and pancreas. Key findings from these studies include the ability to make a clinically relevant treatment zone in each organ with maintained collagenous architecture, potentially allowing treatments in areas not currently amenable to thermal ablation. Treatments across organ capsules have proven safe, including in anticoagulated models which may expand patients eligible for treatment or eliminate the risk associated with taking patients off anti-coagulation. Treatment zones are well-defined with imaging and rapidly resorb, which may allow improved evaluation of treatment zones for residual or recurrent tumor. Understanding the effects of histotripsy in animal models will help inform physicians adopting histotripsy for human clinical use.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias , Animais , Humanos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Fígado/cirurgia , Neoplasias/terapia , Modelos Animais , Rim
10.
J Vasc Interv Radiol ; 34(11): 1986-1996, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37481064

RESUMO

PURPOSE: To compare the safety and efficacy of histotripsy with cryoablation in a chronic human-scale normal porcine kidney model. MATERIALS AND METHODS: Eighteen female domestic swine were divided evenly into histotripsy and cryoablation treatment arms. A planned 2-3 cm diameter treatment was performed under ultrasound (histotripsy) or ultrasound and computed tomography (CT) guidance (cryoablation). Contrast-enhanced CT and serum blood analysis were performed immediately postprocedure and on day 7, with either immediate killing (n = 3) or continued survival to day 30 (n = 6), at which time contrast-enhanced CT, serum blood analysis, and necropsy were performed. Animal welfare, treatment zone appearance, procedure-related adverse events, and histopathology of the treatment zones and surrounding tissues were assessed. RESULTS: Histotripsy treatment zones (mean ±standard deviation diameters, 2.7 ± 0.12 × 2.4 ± 0.19 × 2.4 ± 0.26 cm; volume, 8.3 ± 1.9 cm3) were larger than cryoablation zones (mean diameters, 2.2 ± 0.19 × 1.9 ± 0.13 × 1.7 ± 0.19 cm; volume, 3.9 ± 0.8 cm3; P < .001). At 30 days, histotripsy and cryoablation treatment zone volumes decreased by 96% and 83% on CT, respectively (P < .001). Perirenal hematomas were present after 8 of 9 (89%) cryoablation (mean volume, 22.2 cm3) and 1 of 9 (11%, P < .001) histotripsy (volume, 0.4 cm3) procedures, with active arterial extravasation in 4 of 9 (44%) cryoablation and no histotripsy animals (P = .206). All 9 histotripsy animals and 5 of 9 (56%) cryoablation animals had collecting system debris (P = .042). Changes in serum creatinine were similar between the groups (P = .321). CONCLUSIONS: Other than a higher rate of bleeding after cryoablation, the safety and early efficacy of histotripsy and cryoablation were comparable for creating treatment zones in a chronic normal porcine kidney model.


Assuntos
Criocirurgia , Neoplasias Renais , Humanos , Suínos , Feminino , Animais , Criocirurgia/efeitos adversos , Criocirurgia/métodos , Rim/patologia , Neoplasias Renais/patologia , Tomografia Computadorizada por Raios X , Hemorragia Gastrointestinal/etiologia , Resultado do Tratamento
11.
J Vasc Surg Venous Lymphat Disord ; 11(5): 995-1003, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37120039

RESUMO

OBJECTIVE: The aim of the present study was to evaluate the outcomes of a hospital-wide multidisciplinary initiative to reengage and manage patients with unretrieved chronic indwelling inferior vena cava (IVC) filters placed at a large tertiary care center, who had been lost to follow-up. METHODS: We performed a retrospective review of outcomes from a completed multidisciplinary quality improvement project. The quality improvement project identified and contacted (via letter) patients with chronic indwelling IVC filters placed at a single tertiary care center from 2008 to 2016 who were alive and without evidence of filter retrieval in the medical records. A total of 316 eligible patients were mailed a letter regarding their chronic indwelling IVC filter and the updated recommendations regarding IVC filter removal. The letter included institutional contact information, and all the patients who responded were offered a clinic visit to discuss potential filter retrieval. In the retrospective review, we assessed the outcomes of the quality improvement project, including the patient response rate, follow-up clinic visits, new imaging studies generated, retrieval rate, procedural success, and complications. The patient demographics and filter characteristics were collected and evaluated for correlations with the response and retrieval rates. RESULTS: The patient response rate to the letter was 32% (101 of 316). Of the 101 patients who responded, 72 (71%) were seen in clinic and 59 (82%) underwent new imaging studies. Using standard and advanced techniques, 34 of 36 filters after a median dwell time of 9.4 years (range, 3.3-13.3 years) were successfully retrieved (94% success rate). The patients with a documented IVC filter complication were more likely to respond to the letter (odds ratio, 4.34) and undergo IVC filter retrieval (odds ratio, 6.04). No moderate or severe procedural complications occurred during filter retrieval. CONCLUSIONS: An institutional, multidisciplinary quality initiative successfully identified and reengaged patients with chronic indwelling IVC filters who had been lost to follow-up. The filter retrieval success rate was high and procedural morbidity low. Institution-wide efforts to identify and retrieve chronic indwelling filters are feasible.


Assuntos
Filtros de Veia Cava , Humanos , Fatores de Risco , Fatores de Tempo , Filtros de Veia Cava/efeitos adversos , Remoção de Dispositivo/efeitos adversos , Remoção de Dispositivo/métodos , Estudos Retrospectivos , Veia Cava Inferior , Resultado do Tratamento
12.
Ultrasound Med Biol ; 49(6): 1401-1407, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878828

RESUMO

OBJECTIVE: Histotripsy is an emerging non-invasive, non-ionizing and non-thermal focal tumor therapy. Although histotripsy targeting is currently based on ultrasound (US), other imaging modalities such as cone-beam computed tomography (CBCT) have recently been proposed to enable the treatment of tumors not visible on ultrasound. The objective of this study was to develop and evaluate a multi-modality phantom to facilitate the assessment of histotripsy treatment zones on both US and CBCT imaging. METHODS: Fifteen red blood cell phantoms composed of alternating layers with and without barium were manufactured. Spherical 25-mm histotripsy treatments were performed, and treatment zone size and location were measured on CBCT and ultrasound. Sound speed, impedance and attenuation were measured for each layer type. RESULTS: The average ± standard deviation signed difference between measured treatment diameters was 0.29 ± 1.25 mm. The Euclidean distance between measured treatment centers was 1.68 ± 0.63 mm. The sound speed in the different layers ranged from 1491 to 1514 m/s and was within typically reported soft tissue ranges (1480-1560 m/s). In all phantoms, histotripsy resulted in sharply delineated treatment zones, allowing segmentation in both modalities. CONCLUSION: These phantoms will aid in the development and validation of X-ray-based histotripsy targeting techniques, which promise to expand the scope of treatable lesions beyond only those visible on ultrasound.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias , Humanos , Raios X , Ultrassonografia , Imagens de Fantasmas , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Tomografia Computadorizada de Feixe Cônico
13.
Med Phys ; 50(9): 5505-5517, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36950870

RESUMO

BACKGROUND: In silico testing of novel image reconstruction and quantitative algorithms designed for interventional imaging requires realistic high-resolution modeling of arterial trees with contrast dynamics. Furthermore, data synthesis for training of deep learning algorithms requires that an arterial tree generation algorithm be computationally efficient and sufficiently random. PURPOSE: The purpose of this paper is to provide a method for anatomically and physiologically motivated, computationally efficient, random hepatic arterial tree generation. METHODS: The vessel generation algorithm uses a constrained constructive optimization approach with a volume minimization-based cost function. The optimization is constrained by the Couinaud liver classification system to assure a main feeding artery to each Couinaud segment. An intersection check is included to guarantee non-intersecting vasculature and cubic polynomial fits are used to optimize bifurcation angles and to generate smoothly curved segments. Furthermore, an approach to simulate contrast dynamics and respiratory and cardiac motion is also presented. RESULTS: The proposed algorithm can generate a synthetic hepatic arterial tree with 40 000 branches in 11 s. The high-resolution arterial trees have realistic morphological features such as branching angles (MAD with Murray's law = 1.2 ± 1 . 2 o $ = \;1.2 \pm {1.2^o}$ ), radii (median Murray deviation = 0.08 $ = \;0.08$ ), and smoothly curved, non-intersecting vessels. Furthermore, the algorithm assures a main feeding artery to each Couinaud segment and is random (variability = 0.98 ± 0.01). CONCLUSIONS: This method facilitates the generation of large datasets of high-resolution, unique hepatic angiograms for the training of deep learning algorithms and initial testing of novel 3D reconstruction and quantitative algorithms designed for interventional imaging.


Assuntos
Artéria Hepática , Fígado , Artéria Hepática/diagnóstico por imagem , Simulação por Computador , Fígado/diagnóstico por imagem , Angiografia , Algoritmos
14.
Cancers (Basel) ; 15(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36765700

RESUMO

Osteosarcoma (OS) is a malignant bone tumor treated by limb amputation or limb salvage surgeries and chemotherapy. Histotripsy is a non-thermal, non-invasive focused ultrasound therapy using controlled acoustic cavitation to mechanically disintegrate tissue. Recent ex vivo and in vivo pilot studies have demonstrated the ability of histotripsy for ablating OS but were limited in scope. This study expands on these initial findings to more fully characterize the effects of histotripsy for bone tumors, particularly in tumors with different compositions. A prototype 500 kHz histotripsy system was used to treat ten dogs with suspected OS at an intermediate treatment dose of 1000 pulses per location. One day after histotripsy, treated tumors were resected via limb amputation, and radiologic and histopathologic analyses were conducted to determine the effects of histotripsy for each patient. The results of this study demonstrated that histotripsy ablation is safe and feasible in canine patients with spontaneous OS, while offering new insights into the characteristics of the achieved ablation zone. More extensive tissue destruction was observed after histotripsy compared to that in previous reports, and radiographic changes in tumor size and contrast uptake following histotripsy were reported for the first time. Overall, this study significantly expands our understanding of histotripsy bone tumor ablation and informs future studies for this application.

15.
Respiration ; 102(3): 182-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36652940

RESUMO

BACKGROUND: Image-guided percutaneous thermal ablation is an established treatment option for early-stage lung cancer in medically inoperable patients but carries a high risk of pleura-related complications, particularly pneumothorax. OBJECTIVE: This study aimed to determine if image-guided transbronchial microwave ablation (tMWA) is a feasible approach to treat peripheral stage 1 lung cancer. METHOD: A prospective, single-arm, multicenter study sought to enroll 40 adults who were medically inoperable or declined surgery for peripheral stage 1 lung tumors (≤20 mm). Ablation was performed using navigational bronchoscopy and a flexible MWA probe, guided by cone-beam CT with augmented fluoroscopy. Follow-up at 1, 6, and 12 months included CT imaging of the ablation zone and possible tumor recurrence, adverse events (AEs), pulmonary function, and quality of life. RESULTS: Across 2 sites, 11 tumors (10 NSCLC, 1 carcinoid) were treated in 10 enrolled patients. Median tumor diameter was 13 × 14 mm (7-19 mm) and median minimum ablative margin was 11 mm (5-19 mm). Technical success and technique efficacy were achieved in all patients. No tumor recurrence was seen during 12-month follow-up. No pneumothorax, pleural effusion, or bronchopleural fistula were noted. Minor AEs included scant hemoptysis, pain, cough, and dyspnea. Two serious AEs occurred ≤30 days of ablation and included a COPD exacerbation (day 9) and a death of unknown cause (day 15). The death led the sponsor to halt enrollment. Pulmonary function and quality-of-life indices remained stable. CONCLUSIONS: Image-guided tMWA is a technically feasible approach for peripheral early-stage lung cancer but warrants further evaluation of safety and efficacy in larger cohorts.


Assuntos
Ablação por Cateter , Neoplasias Pulmonares , Pneumotórax , Adulto , Humanos , Micro-Ondas/uso terapêutico , Estudos Prospectivos , Qualidade de Vida , Ablação por Cateter/efeitos adversos , Recidiva Local de Neoplasia/etiologia , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Neoplasias Pulmonares/patologia , Pneumotórax/etiologia , Pneumotórax/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
16.
J Vasc Interv Radiol ; 34(3): 386-394.e2, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36503074

RESUMO

PURPOSE: To determine the risk of mechanical vessel wall damage resulting in hemorrhage during and after hepatic and renal histotripsy in an anticoagulated in vivo porcine model. MATERIALS AND METHODS: Non-tumor-bearing pigs (n = 8; mean weight, 52.5 kg) were anticoagulated with warfarin (initial dose, 0.08 mg/kg) to a target prothrombin time (PT) of 30%-50% above baseline. A total of 15 histotripsy procedures were performed (kidney: n = 8, 2.0-cm sphere; liver: n = 7, 2.5-cm sphere). Treatments were immediately followed by computed tomography (CT) imaging. Animals were observed for 7 days while continuing anticoagulation, followed by repeat CT and necropsy. RESULTS: All animals survived to complete the entire protocol with no signs of disability or distress. Three animals had hematuria (pink urine without clots). Baseline PT values (mean, 16.0 seconds) were elevated to 22.0 seconds (37.5% above baseline, P = .003) on the day of treatment and to 28.8 seconds (77.8% above baseline, P < .001) on the day of necropsy. At the time of treatment, 5 of 8 (63%) animals were at a therapeutic anticoagulation level, and all 8 animals (100%) reached therapeutic levels by the time of necropsy. There were no cases of intraparenchymal, peritoneal, or retroperitoneal hemorrhage associated with any treatments despite 5 of 7 (71%) liver and all 8 (100%) kidney treatments extending to the organ surface. CONCLUSIONS: Liver and kidney histotripsy seems safe with no elevated bleeding risk in this anticoagulated animal model, supporting the possibility of histotripsy treatments in patients on anticoagulation.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Fígado , Suínos , Animais , Rim , Hemorragia/etiologia , Ablação por Ultrassom Focalizado de Alta Intensidade/efeitos adversos , Anticoagulantes
17.
Cardiovasc Intervent Radiol ; 46(1): 120-127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36097074

RESUMO

PURPOSE: This study was designed to evaluate the feasibility and safety of histotripsy subcutaneous (SQ) fat treatment in an in-vivo porcine model, and evaluate evolution of the treated volume on MRI and pathology. METHODS/MATERIALS: 10 histotripsy SQ fat treatments were completed in 5 swine, divided into four groups based on pre-determined survival: day 0 (n = 4), day 7 (n = 2), day 28 (n = 2), and day 56 (n = 2). A 4.0 × 4.0x2.0 cm ovoid treatment was created in the fat pad of the posterior thorax. MRI of survived animals were obtained on day 7 (n = 6), day 28 (n = 4), and day 56 (n = 2), and reviewed for size and imaging characteristics. Technical success was defined as the creation of a treatment zone in the targeted SQ fat. Skin firmness and indentation were qualitatively scored. RESULTS: Histotripsy had a 100% (10/10) technical success for creation of SQ fat treatments. Mean treatment time was 35.5 min (range 35-36.5). The volume of treated SQ fat demonstrated 92% volume reduction over the study. Day 0 gross pathology treatment had a mean volume of 12.6 cm3 (± 2.1) (prescribed volume of 16.7 cm3), which decreased to 8.3 cm3 (± 2.8) by day 7 (34% overall decrease), 3.0 cm3 (± 0.5) by day 28 (76% overall decrease), and 1.0 cm3 (± 1.2) by day 56 (92% overall decrease). Mean firmness and indentation scores showed no change from baseline at all time points, with no overlying skin injury. CONCLUSION: Histotripsy safely and effectively treated SQ fat of an in-vivo porcine model, with volume reduction over time.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Suínos , Animais , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética , Gordura Subcutânea/diagnóstico por imagem
18.
IEEE Trans Biomed Eng ; 70(2): 592-602, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35984807

RESUMO

OBJECTIVE: Histotripsy is an emerging noninvasive, nonionizing and nonthermal focal cancer therapy that is highly precise and can create a treatment zone of virtually any size and shape. Current histotripsy systems rely on ultrasound imaging to target lesions. However, deep or isoechoic targets obstructed by bowel gas or bone can often not be treated safely using ultrasound imaging alone. This work presents an alternative x-ray C-arm based targeting approach and a fully automated robotic targeting system. METHODS: The approach uses conventional cone beam CT (CBCT) images to localize the target lesion and 2D fluoroscopy to determine the 3D position and orientation of the histotripsy transducer relative to the C-arm. The proposed pose estimation uses a digital model and deep learning-based feature segmentation to estimate the transducer focal point relative to the CBCT coordinate system. Additionally, the integrated robotic arm was calibrated to the C-arm by estimating the transducer pose for four preprogrammed transducer orientations and positions. The calibrated system can then automatically position the transducer such that the focal point aligns with any target selected in a CBCT image. RESULTS: The accuracy of the proposed targeting approach was evaluated in phantom studies, where the selected target location was compared to the center of the spherical ablation zones in post-treatment CBCTs. The mean and standard deviation of the Euclidean distance was 1.4 ±0.5 mm. The mean absolute error of the predicted treatment radius was 0.5 ±0.5 mm. CONCLUSION: CBCT-based histotripsy targeting enables accurate and fully automated treatment without ultrasound guidance. SIGNIFICANCE: The proposed approach could considerably decrease operator dependency and enable treatment of tumors not visible under ultrasound.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Raios X , Tomografia Computadorizada de Feixe Cônico/métodos , Fluoroscopia/métodos , Imagens de Fantasmas
19.
Eur Radiol ; 33(2): 1050-1062, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36048208

RESUMO

OBJECTIVE: To compare the acute and chronic safety and treatment effects of non-invasive hepatic histotripsy vs. percutaneous microwave (MW) ablation in a healthy porcine model. METHODS: This was a dual-arm study in which each animal (n = 14) received either a single hepatic microwave (n = 6) or histotripsy (n = 6 single treatment; n = 2 double treatment) under ultrasound guidance. The goal was to create 2.5-3.0 cm short-axis treatments in similar locations across modalities. Animals were survived for 1 month with contrast-enhanced CT imaging on days 0, 2, 7, 14, and 28. On day 28, necropsy and histopathology were performed. RESULTS: All procedures were well-tolerated. MW ablation zones were longer and more oblong, but equivalent in the short axes to histotripsy zones on immediate post-procedure CT (p < 0.001 and p = 0.45, respectively). Overall, MW volumes were larger (21.4 cm3 vs. 13.4 cm3; p = 0.001) and histotripsy treatment zones were more spherical (p = 0.007). Histotripsy zones were close to the prescribed size (p < 0.001). Over the study period, histotripsy treatment zones decreased in volume while microwave ablation zones slightly increased (-83% vs. +17%, p = 0.001). There were several imaging-only findings: Branch portal vein thrombus with both histotripsy (7/8) and MW (6/6), hematoma in 2/6 MW only, and a gallbladder injury in 1/6 MW animals. The ablation zones demonstrated complete cellular destruction for both modalities. CONCLUSION: Histotripsy was associated with more spherical treatments, fewer biliary complications, and greater treatment zone involution. Hepatic MW and histotripsy treatment in a normal porcine model appear at least equally effective for creating treatment zones with a similar safety profile. KEY POINTS: • Microwave ablation and histotripsy for liver treatment in a healthy porcine model yield equivalent procedural tolerance and cellular destruction. • Histotripsy was associated with more spherical treatments, fewer biliary complications, and greater treatment zone involution over the 28-day follow-up period. • These findings confirm the safety and efficacy of hepatic histotripsy and support the pursuit of clinical trials to further evaluate the translatability of these results.


Assuntos
Técnicas de Ablação , Ablação por Cateter , Ablação por Radiofrequência , Suínos , Animais , Micro-Ondas/uso terapêutico , Fígado/diagnóstico por imagem , Fígado/cirurgia , Fígado/irrigação sanguínea , Técnicas de Ablação/métodos , Veia Porta/cirurgia , Ablação por Cateter/métodos
20.
Phys Med Biol ; 67(21)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36162399

RESUMO

Objective.Existing clinical C-arm interventional systems use scintillator-based energy-integrating flat panel detectors (FPDs) to generate cone-beam CT (CBCT) images. Despite its volumetric coverage, FPD-CBCT does not provide sufficient low-contrast detectability desired for certain interventional procedures. The purpose of this work was to develop a C-arm photon counting detector (PCD) CT system with a step-and-shoot data acquisition method to further improve the tomographic imaging performance of interventional systems.Approach.As a proof-of-concept, a cadmium telluride-based 51 cm × 0.6 cm PCD was mounted in front of a FPD in an Artis Zee biplane system. A total of 10 C-arm sweeps (5 forward and 5 backward) were prescribed. A motorized patient table prototype was synchronized with the C-arm system such that it translates the object by a designated distance during the sub-second rest time in between gantry sweeps. To evaluate whether this multi-sweep step-and-shoot acquisition strategy can generate high-quality and volumetric PCD-CT images without geometric distortion artifacts, experiments were performed using physical phantoms, a human cadaver head, and anin vivoswine subject. Comparison with FPD-CT was made under matched narrow beam collimation and radiation dose conditions.Main results.Compared with FPD-CT images, PCD-CT images had lower noise and improved visualization of low-contrast lesion models, as well as improved visibility of small iodinated blood vessels. Fine structures were visualized more clearly by the PCD-CT than the highest-available resolution provided by FPD-CBCT and MDCT. No perceivable geometric distortion artifacts were observed in the multi-planar PCD-CT images.Significance.This work is the first demonstration of the feasibility of high-quality and multi-planar (volumetric) PCD-CT imaging with a rotating C-arm gantry.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada por Raios X , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA