Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Nutr ; 60(8): 4439-4452, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34081167

RESUMO

PURPOSE: This study investigated metabolic benefits of protein hydrolysates from the macroalgae Palmaria palmata, previously shown to inhibit dipeptidylpeptidase-4 (DPP-4) activity in vitro. METHODS: Previously, Alcalase/Flavourzyme-produced P. palmata protein hydrolysate (PPPH) improved glycaemia and insulin production in streptozotocin-induced diabetic mice. Here the PPPH, was compared to alternative Alcalase, bromelain and Promod-derived hydrolysates and an unhydrolysed control. All PPPH's underwent simulated gastrointestinal digestion (SGID) to establish oral bioavailability. PPPH's and their SGID counterparts were tested in pancreatic, clonal BRIN-BD11 cells to assess their insulinotropic effect and associated intracellular mechanisms. PPPH actions on the incretin effect were assessed via measurement of DPP-4 activity, coupled with GLP-1 and GIP release from GLUTag and STC-1 cells, respectively. Acute in vivo effects of Alcalase/Flavourzyme PPPH administration on glucose tolerance and satiety were assessed in overnight-fasted mice. RESULTS: PPPH's (0.02-2.5 mg/ml) elicited varying insulinotropic effects (p < 0.05-0.001). SGID of the unhydrolysed protein control, bromelain and Promod PPPH's retained, or improved, bioactivity regarding insulin secretion, DPP-4 inhibition and GIP release. Insulinotropic effects were retained for all SGID-hydrolysates at higher PPPH concentrations. DPP-4 inhibitory effects were confirmed for all PPPH's and SGID counterparts (p < 0.05-0.001). PPPH's were shown to directly influence the incretin effect via upregulated GLP-1 and GIP (p < 0.01-0.001) secretion in vitro, largely retained after SGID. Alcalase/Flavourzyme PPPH produced the greatest elevation in cAMP (p < 0.001, 1.7-fold), which was fully retained post-SGID. This hydrolysate elicited elevations in intracellular calcium (p < 0.01) and membrane potential (p < 0.001). In acute in vivo settings, Alcalase/Flavourzyme PPPH improved glucose tolerance (p < 0.01-0.001) and satiety (p < 0.05-0.001). CONCLUSION: Bioavailable PPPH peptides may be useful for the management of T2DM and obesity.


Assuntos
Diabetes Mellitus Experimental , Peptídeo 1 Semelhante ao Glucagon , Animais , Glicemia , Polipeptídeo Inibidor Gástrico , Incretinas , Insulina/metabolismo , Camundongos , Hidrolisados de Proteína , Regulação para Cima
2.
Biochem Pharmacol ; 158: 95-102, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30292757

RESUMO

The importance of dipeptidyl peptidase-4 mediated N-terminal metabolism of the enteroendocrine-derived hormone, peptide YY (PYY), for receptor binding and subsequent biological action profile is well established. However, an intact C-terminus may be fundamental also for bioactivity of PYY peptides. The current study has demonstrated C-terminal degradation of the major recognised circulating forms of PYY, PYY(1-36) and PYY(3-36), in plasma, resulting in production of PYY(1-34) and PYY(3-34). Interestingly, the angiotensin-converting-enzyme (ACE) inhibitor, captopril, blocked formation of PYY(3-34) from PYY(3-36) in plasma, but did result in the appearance of PYY(3-35). In addition, we were able to evidence C-terminal truncation of PYY(1-35) and PYY(3-35) to PYY(1-34) and PYY(3-34), respectively. As expected, PYY(1-36) and PYY(3-36) inhibited (P < 0.05-P < 0.001) glucose- and alanine-stimulated insulin secretion from BRIN-BD11 beta-cells. In contrast, PYY(1-34), PYY(3-34), PYY(1-35) and PYY(3-35) were devoid of insulinostatic actions. Both PYY(1-36) and PYY(3-36), but not related PYY metabolites, significantly (P < 0.05-P < 0.001) enhanced proliferation of BRIN BD11 and 1.1B4 beta-cell lines, and protected (P < 0.01-P < 0.001) these cell lines against cytokine-induced apoptosis. As expected, PYY(3-36) induced clear (P < 0.05-P < 0.01) appetite suppressive effects in mice, but this action was eliminated by mono- or di-peptide C-terminal truncation. Interestingly, captopril significantly (P < 0.05) augmented the anorexigenic effects of PYY(3-36) in mice. PYY(1-36), PYY(3-36), PYY(1-34) and PYY(3-34) lacked effects on in vivo glucose tolerance or glucose-induced insulin release. Taken together, these data highlight the unrecognised importance of C-terminal integrity of PYY peptides for biological activity and therapeutic usefulness in obesity-diabetes.


Assuntos
Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Peptídeo YY/sangue , Peptídeo YY/farmacologia , Proteólise/efeitos dos fármacos , Resposta de Saciedade/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Camundongos , Resposta de Saciedade/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA