Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1134450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180379

RESUMO

Introduction: Drought and submergence are contrasting abiotic stresses that often occur in the same rice crop season and cause complete crop failure in many rain-fed lowland areas of Asia. Methods: To develop rice varieties with good tolerances to drought and submergence, 260 introgression lines (ILs) selected for drought tolerance (DT) from nine BC2 populations were screened for submergence tolerance (ST), resulting in 124 ILs with significantly improved ST. Results: Genetic characterization of the 260 ILs with DNA markers identified 59 DT quantitative trait loci (QTLs) and 68 ST QTLs with an average 55% of the identified QTLs associated with both DT and ST. Approximately 50% of the DT QTLs showed 'epigenetic' segregation with very high donor introgression and/or loss of heterozygosity (LOH). Detailed comparison of the ST QTLs identified in ILs selected only for ST with ST QTLs detected in the DT-ST selected ILs of the same populations revealed three groups of QTLs underlying the relationship between DT and ST in rice: a) QTLs with pleiotropic effects on both DT and ST; b) QTLs with opposite effects on DT and ST; and c) QTLs with independent effects on DT and ST. Combined evidence identified most likely candidate genes for eight major QTLs affecting both DT and ST. Moreover, group b QTLs were involved in the Sub1regulated pathway that were negatively associated with most group aQTLs. Discussion: These results were consistent with the current knowledge that DT and ST in rice are controlled by complex cross-talks between or among different phytohormone-mediated signaling pathways. Again, the results demonstrated that the strategy of selective introgression was powerful and efficient for simultaneous improvement and genetic dissection of multiple complex traits, including DT and ST.

2.
Plant Biotechnol J ; 20(2): 374-389, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614273

RESUMO

Vegetative storage proteins (VSPs) are known to serve as nitrogen reserves in many dicot plants but remain undiscovered in grasses, most widely grown group of crops globally. We identified and characterized a VSP in maize and demonstrated that its overexpression improved drought tolerance. Nitrogen supplementation selectively induced a mesophyll lipoxygenase (ZmLOX6), which was targeted to chloroplasts by a novel N-terminal transit peptide of 62 amino acids. When ectopically expressed under the control of various tissue-specific promoters, it accumulated to a fivefold higher level upon expression in the mesophyll cells than the wild-type plants. Constitutive expression or targeted expression specifically to the bundle sheath cells increased its accumulation by less than twofold. The overexpressed ZmLOX6 was remobilized from the leaves like other major proteins during grain development. Evaluated in the field over locations and years, transgenic hybrids overexpressing ZmLOX6 in the mesophyll cells significantly outyielded nontransgenic sibs under managed drought stress imposed at flowering. Additional storage of nitrogen as a VSP in maize leaves ameliorated the effect of drought on grain yield.


Assuntos
Secas , Zea mays , Cloroplastos , Grão Comestível/genética , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Zea mays/genética
3.
Proc Natl Acad Sci U S A ; 116(47): 23850-23858, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685622

RESUMO

Increasing maize grain yield has been a major focus of both plant breeding and genetic engineering to meet the global demand for food, feed, and industrial uses. We report that increasing and extending expression of a maize MADS-box transcription factor gene, zmm28, under the control of a moderate-constitutive maize promoter, results in maize plants with increased plant growth, photosynthesis capacity, and nitrogen utilization. Molecular and biochemical characterization of zmm28 transgenic plants demonstrated that their enhanced agronomic traits are associated with elevated plant carbon assimilation, nitrogen utilization, and plant growth. Overall, these positive attributes are associated with a significant increase in grain yield relative to wild-type controls that is consistent across years, environments, and elite germplasm backgrounds.


Assuntos
Produtos Agrícolas/genética , Grão Comestível , Genes de Plantas , Zea mays/genética , Sequência de Aminoácidos , Produtos Agrícolas/enzimologia , Glutamato-Amônia Ligase/metabolismo , Nitrato Redutase/metabolismo , Nitrogênio/metabolismo , Fotossíntese/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transcriptoma , Zea mays/enzimologia
4.
Plant Biotechnol J ; 17(12): 2272-2285, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31033139

RESUMO

Functional stay-green is a valuable trait that extends the photosynthetic period, increases source capacity and biomass and ultimately translates to higher grain yield. Selection for higher yields has increased stay-green in modern maize hybrids. Here, we report a novel QTL controlling functional stay-green that was discovered in a mapping population derived from the Illinois High Protein 1 (IHP1) and Illinois Low Protein 1 (ILP1) lines, which show very different rates of leaf senescence. This QTL was mapped to a single gene containing a NAC-domain transcription factor that we named nac7. Transgenic maize lines where nac7 was down-regulated by RNAi showed delayed senescence and increased both biomass and nitrogen accumulation in vegetative tissues, demonstrating NAC7 functions as a negative regulator of the stay-green trait. More importantly, crosses between nac7 RNAi parents and two different elite inbred testers produced hybrids with prolonged stay-green and increased grain yield by an average 0.29 megagram/hectare (4.6 bushel/acre), in 2 years of multi-environment field trials. Subsequent RNAseq experiments, one employing nac7 RNAi leaves and the other using leaf protoplasts overexpressing Nac7, revealed an important role for NAC7 in regulating genes in photosynthesis, chlorophyll degradation and protein turnover pathways that each contribute to the functional stay-green phenotype. We further determined the putative target of NAC7 and provided a logical extension for the role of NAC7 in regulating resource allocation from vegetative source to reproductive sink tissues. Collectively, our findings make a compelling case for NAC7 as a target for improving functional stay-green and yields in maize and other crops.


Assuntos
Fotossíntese , Locos de Características Quantitativas , Fatores de Transcrição/genética , Zea mays/genética , Biomassa , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Nitrogênio , Folhas de Planta , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Zea mays/crescimento & desenvolvimento
5.
Plant Physiol ; 175(3): 1350-1369, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28899960

RESUMO

Drought stress is one of the main environmental problems encountered by crop growers. Reduction in arable land area and reduced water availability make it paramount to identify and develop strategies to allow crops to be more resilient in water-limiting environments. The plant hormone abscisic acid (ABA) plays an important role in the plants' response to drought stress through its control of stomatal aperture and water transpiration, and transgenic modulation of ABA levels therefore represents an attractive avenue to improve the drought tolerance of crops. Several steps in the ABA-signaling pathway are controlled by ubiquitination involving really interesting new genes (RING) domain-containing proteins. We characterized the maize (Zea mays) RING protein family and identified two novel RING-H2 genes called ZmXerico1 and ZmXerico2 Expression of ZmXerico genes is induced by drought stress, and we show that overexpression of ZmXerico1 and ZmXerico2 in Arabidopsis and maize confers ABA hypersensitivity and improved water use efficiency, which can lead to enhanced maize yield performance in a controlled drought-stress environment. Overexpression of ZmXerico1 and ZmXerico2 in maize results in increased ABA levels and decreased levels of ABA degradation products diphaseic acid and phaseic acid. We show that ZmXerico1 is localized in the endoplasmic reticulum, where ABA 8'-hydroxylases have been shown to be localized, and that it functions as an E3 ubiquitin ligase. We demonstrate that ZmXerico1 plays a role in the control of ABA homeostasis through regulation of ABA 8'-hydroxylase protein stability, representing a novel control point in the regulation of the ABA pathway.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica , Secas , Homeostase , Domínios RING Finger , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Zea mays/fisiologia , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/fisiologia , Ritmo Circadiano/genética , Sequência Consenso , Desidratação , Retículo Endoplasmático/metabolismo , Estabilidade Enzimática , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Família Multigênica , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Zea mays/enzimologia , Zea mays/genética
6.
J Exp Bot ; 66(22): 7339-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26428065

RESUMO

Breeders have successfully improved maize (Zea mays L.) grain yield for the conditions of the US corn-belt over the past 80 years, with the past 50 years utilizing single-cross hybrids. Long-term improvement for grain yield under water-limited conditions has also been reported. Grain yield under water-limited conditions depends on water use, water use efficiency, and harvest index. It has been hypothesized that long-term genetic gain for yield could be due, in part, to increased water capture from the soil. This hypothesis was tested using a set of elite single-cross hybrids that were released by DuPont Pioneer between 1963 and 2009. Eighteen hybrids were grown in the field during 2010 and 2011 growing seasons at Woodland, CA, USA. Crops grew predominantly on stored soil water and drought stress increased as the season progressed. Soil water content was measured to 300cm depth throughout the growing season. Significant water extraction occurred to a depth of 240-300cm and seasonal water use was calculated from the change in soil water over this rooting zone. Grain yield increased significantly with year of commercialization, but no such trend was observed for total water extraction. Therefore, the measured genetic gain for yield for the period represented by this set of hybrids must be related to either increased efficiency of water use or increased carbon partitioning to the grain, rather than increased soil water uptake.


Assuntos
Água/metabolismo , Zea mays/metabolismo , Cruzamento , Produtos Agrícolas/metabolismo , Cruzamentos Genéticos , Secas , Água Subterrânea , Estações do Ano , Seleção Genética , Solo , Tempo
7.
Plant Biotechnol J ; 12(6): 685-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24618117

RESUMO

A transgenic gene-silencing approach was used to modulate the levels of ethylene biosynthesis in maize (Zea mays L.) and determine its effect on grain yield under drought stress in a comprehensive set of field trials. Commercially relevant transgenic events were created with down-regulated ACC synthases (ACSs), enzymes that catalyse the rate-limiting step in ethylene biosynthesis. These events had ethylene emission levels reduced approximately 50% compared with nontransgenic nulls. Multiple, independent transgenic hybrids and controls were tested in field trials at managed drought-stress and rain-fed locations throughout the US. Analysis of yield data indicated that transgenic events had significantly increased grain yield over the null comparators, with the best event having a 0.58 Mg/ha (9.3 bushel/acre) increase after a flowering period drought stress. A (genotype × transgene) × environment interaction existed among the events, highlighting the need to better understand the context in which the down-regulation of ACSs functions in maize. Analysis of secondary traits showed that there was a consistent decrease in the anthesis-silking interval and a concomitant increase in kernel number/ear in transgene-positive events versus nulls. Selected events were also field tested under a low-nitrogen treatment, and the best event was found to have a significant 0.44 Mg/ha (7.1 bushel/acre) yield increase. This set of extensive field evaluations demonstrated that down-regulating the ethylene biosynthetic pathway can improve the grain yield of maize under abiotic stress conditions.


Assuntos
Secas , Etilenos/biossíntese , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Liases/metabolismo , Nitrogênio/farmacologia , Plantas Geneticamente Modificadas , Interferência de RNA/efeitos dos fármacos , Sementes/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
8.
Am J Bot ; 92(12): 1970-4, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21646115

RESUMO

Embolism reversal in rice plants was studied by testing the plant's ability to refill embolized conduits while xylem pressures were substantially negative. Intact, potted plants were water-stressed to a xylem pressure of -1.88 ± 0.1 MPa and a 66.3 ± 3.8% loss of xylem conductivity (PLC) by cavitation. Stressed plants were carefully rewatered, allowing xylem pressure to rise, but not above the theoretical threshold of c. -0.15 MPa for embolism collapse. Despite xylem pressures being more negative than this threshold, the PLC fell significantly (28.5 ± 5.6%), indicating the refilling of vessels. Above c. -1.0 MPa, almost all plants regained their maximum hydraulic conductivity. Dye uptake experiments showed the same pattern of embolism refilling despite negative pressure. Refilling was prevented in plants that were light-starved for 5 d, suggesting the unknown mechanism is dependent on metabolic energy. Results are among the first showing that herbaceous plants can reverse embolism without bulk xylem pressures rising near or above atmospheric.

9.
J Exp Bot ; 55(396): 433-47, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14739266

RESUMO

The relative contribution of the apoplastic and cell-to-cell paths to the overall hydraulic conductivity of the outer part of rice roots (LpOPR) was estimated using a pressure perfusion technique for 30-d-old rice plants (lowland cultivar, IR64, and upland cultivar, Azucena). The technique was based on the perfusion of aerenchyma of root segments from two different zones (20-50 mm and 50-100 mm from the root apex) with aerated nutrient solution using precise pump rates. The outer part of roots (OPR) comprised an outermost rhizodermis, an exodermis, sclerenchyma fibre cells, and the innermost unmodified cortical cell layer. No root anatomical differences were observed for the two cultivars used. Development of apoplastic barriers such as Casparian bands and suberin lamellae in the exodermis were highly variable. On average, matured apoplastic barriers were observed at around 50-70 mm from the root apex. Lignification of the exodermis was completed earlier than that of sclerenchyma cells. Radial water flow across the OPR was impeded either by partially blocking off the porous apoplast with China ink particles (diameter 50 nm) or by closing water channels (aquaporins) in cell membranes with 50 micro M HgCl2. The reduction of LpOPR was relatively larger in the presence of an apoplastic blockage with ink ( approximately 30%) than in the presence of the water channel blocker ( approximately 10%) suggesting a relatively larger apoplastic water flow. The reflection coefficient of the OPR (sigmasOPR) for mannitol significantly increased during both treatments. It was larger when pores of the apoplast were closed, but absolute values were low (overall range of sigmasOPR=0.1-0.4), which also suggested a large contribution of the non-selective, apoplastic path to overall water flow. The strongest evidence in favour of a predominantly apoplastic water transport came from the comparison between diffusional (PdOPR, measured with heavy water, HDO) and osmotic water permeability (PfOPR) or hydraulic conductivity (LpOPR). PfOPR was larger by a factor of 600-1400 compared with P(dOPR). The development of OPR along roots resulted in a decrease of PdOPR by a factor of three (segments taken at 20-50 and 50-100 mm from root apex, respectively). Heat-killing of living cells resulted in an increase of PdOPR for both immature (20-50 mm) and mature (50-100 mm) root segments by a factor of two. Even though both pathways (apoplast and cell-to-cell) contributed to the overall water flow, the findings indicate predominantly apoplastic water flow across the OPR, even in the presence of apoplastic barriers. Low diffusional water permeabilities may suggest a low rate of oxygen diffusion across the OPR from aerenchyma to the outer anaerobic soil medium (low PO2OPR). To date, there are no data on PO2OPR. Provisional data of radial oxygen losses (ROL) across the OPR suggest that, unlike water, rice roots efficiently retain oxygen within the aerenchyma. This ability strongly increases as roots/OPR develop.


Assuntos
Aquaporinas/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Oryza/fisiologia , Raízes de Plantas/fisiologia , Água/fisiologia , Modelos Biológicos , Raízes de Plantas/anatomia & histologia
10.
Planta ; 217(2): 193-205, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12783327

RESUMO

A new pressure-perfusion technique was used to measure hydraulic and osmotic properties of the outer part of roots (OPR) of 30-day-old rice plants (lowland cultivar: IR64, and upland cultivar: Azucena). The OPR comprised rhizodermis, exodermis, sclerenchyma and one cortical cell layer. The technique involved perfusion of aerenchyma of segments from two different root zones (20-50 mm and 50-100 mm from the tip) at precise rates using aerated nutrient solution. The hydraulic conductivity of the OPR (Lp(OPR)=1.2x10(-6) m s(-1) MPa(-1)) was larger by a factor of 30 than the overall hydraulic conductivity (Lp(r)=4x10(-8) m s(-1) MPa(-1)) as measured by pressure chamber and root pressure probe. Low reflection coefficients were obtained for mannitol and NaCl for the OPR (sigma(sOPR)=0.14 and 0.09, respectively). The diffusional water permeability ( P(dOPR)) estimated from isobaric flow of heavy water was smaller by three orders of magnitude than the hydraulic conductivity (Lp(OPR)/ P(fOPR)). Although detailed root anatomy showed well-defined Casparian bands and suberin lamellae in the exodermis, the findings strongly indicate a predominantly apoplastic water flow in the OPR. The Lp(OPR) of heat-killed root segments increased by a factor of only 2, which is in line with the conclusion of a dominating apoplastic water flow. The hydraulic resistance of the OPR was not limiting the passage of water across the root cylinder. Estimations of the hydraulic properties of aerenchyma suggested that the endodermis was rate-limiting the water flow, although the aerenchyma may contribute to the overall resistance. The resistance of the aerenchyma was relatively low, because mono-layered cortical septa crossing the aerenchyma ('spokes') short-circuited the air space between the stele and the OPR. Spokes form hydraulic bridges that act like wicks. Low diffusional water permeabilities of the OPR suggest that radial oxygen losses from aerenchyma to medium are also low. It is concluded that in rice roots, water uptake and oxygen retention are optimized in such a way that hydraulic water flow can be kept high in the presence of a low efflux of oxygen which is diffusional in nature.


Assuntos
Oryza/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Água/metabolismo , Transporte Biológico , Difusão , Pressão Hidrostática , Oryza/anatomia & histologia , Oryza/citologia , Pressão Osmótica , Oxigênio/metabolismo , Perfusão/instrumentação , Perfusão/métodos , Permeabilidade , Raízes de Plantas/citologia , Transpiração Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA