RESUMO
Lectins are carbohydrate-binding proteins with specific affinity to glycoconjugates expressed in various tissues. Lectins are of substantial utility as research, histochemical, and diagnostic tools in mammalian systems. Reactivity of 12 commonly used plant-based lectins was studied in zebrafish liver. Four lectins, tomato lectin (TL), wheat germ agglutinin, concanavalin A, and Jacalin showed strong reactivity to hepatic parenchymal structures. Importantly, TL reacted to glycoconjugates within segments of the larval and adult intrahepatic biliary network, from canaliculi to bile ducts. We provide evidence that lectins can serve as important histochemical tools to investigate the structural and functional characteristics of the zebrafish liver.
Assuntos
Lectinas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Histocitoquímica , Fígado/metabolismo , Glicoconjugados/metabolismo , Mamíferos/metabolismoRESUMO
Serial block-face scanning electron microscopy (SBF-SEM) allows for the collection of hundreds to thousands of serially-registered ultrastructural images, offering an unprecedented three-dimensional view of tissue microanatomy. While SBF-SEM has seen an exponential increase in use in recent years, technical aspects such as proper tissue preparation and imaging parameters are paramount for the success of this imaging modality. This imaging system benefits from the automated nature of the device, allowing one to leave the microscope unattended during the imaging process, with the automated collection of hundreds of images possible in a single day. However, without appropriate tissue preparation cellular ultrastructure can be altered in such a way that incorrect or misleading conclusions might be drawn. Additionally, images are generated by scanning the block-face of a resin-embedded biological sample and this often presents challenges and considerations that must be addressed. The accumulation of electrons within the block during imaging, known as "tissue charging," can lead to a loss of contrast and an inability to appreciate cellular structure. Moreover, while increasing electron beam intensity/voltage or decreasing beam-scanning speed can increase image resolution, this can also have the unfortunate side effect of damaging the resin block and distorting subsequent images in the imaging series. Here we present a routine protocol for the preparation of biological tissue samples that preserves cellular ultrastructure and diminishes tissue charging. We also provide imaging considerations for the rapid acquisition of high-quality serial-images with minimal damage to the tissue block.
Assuntos
Face/diagnóstico por imagem , Microscopia Eletrônica de Varredura/métodos , AnimaisRESUMO
In the last two decades, the zebrafish has emerged as an important model species for heart regeneration studies. Various approaches to model loss of cardiac myocytes and myocardial infarction in the zebrafish have been devised, and have included resection, genetic ablation, and cryoinjury. However, to date, the response of the zebrafish ventricle to cautery injury has not been reported. Here, we describe a simple and reproducible method using cautery injury via a modified nichrome inoculating needle as a probe to model myocardial infarction in the zebrafish ventricle. Using light and electron microscopy, we show that cardiac cautery injury is attended by significant inflammatory cell infiltration, accumulation of collagen in the injured area, and the reconstitution of the ventricular myocardium. Additionally, we document the ablation of cardiac nerve fibers, and report that the re-innervation of the injured zebrafish ventricle is protracted, compared to other repair processes that accompany the regeneration of the cauterized ventricle. Taken together, our study demonstrates that cautery injury is a simple and effective means for generating necrotic tissue and eliciting a remodeling and regenerative response in the zebrafish heart. This approach may serve as an important tool in the methods toolbox for regeneration studies in the zebrafish.
RESUMO
BACKGROUND: Aquatic species in several clades possess cement glands producing adhesive secretions of various strengths. In vertebrates, transient adhesive organs have been extensively studied in Xenopus laevis, other anurans, and in several fish species. However, the development of these structures is not fully understood. RESULTS: Here, we report on the development and functional morphology of the adhesive gland of a giant danio species, Devario malabaricus. We found that the gland is localized on the larval head, is composed of goblet-like secretory cells framed by basal, bordering, and intercalated apical epithelial cells, and is innervated by the trigeminal ganglion. The gland allows nonswimming larvae to adhere to various substrates. Its secretory cells differentiate by 12 hours postfertilization and begin to disappear in the second week of life. Exogenous retinoic acid disrupts the gland's patterning. More importantly, the single mature gland emerges from fusion of two differentiated secretory cells fields; this fusion is dependent on nonmuscle myosin II function. CONCLUSIONS: Taken together, our studies provide the first documentation of the embryonic development, structure, and function of the adhesive apparatus of a danioninae. To our knowledge, this is also the first report of a cement gland arising from convergence of two bilateral fields.
Assuntos
Cyprinidae/embriologia , Embrião não Mamífero/embriologia , Glândulas Exócrinas/embriologia , Células Caliciformes/metabolismo , Organogênese/fisiologia , Animais , Embrião não Mamífero/citologia , Glândulas Exócrinas/citologia , Células Caliciformes/citologia , Organogênese/efeitos dos fármacos , Tretinoína/farmacologiaAssuntos
Células-Tronco Adultas/fisiologia , Antígenos Ly/metabolismo , Proteínas de Membrana/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/fisiologia , Animais , Antígenos Ly/genética , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Vasos Coronários/cirurgia , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Desenvolvimento Muscular , Transplante de Células-TroncoRESUMO
Collagen XXII (COL22A1) is a quantitatively minor collagen, which belongs to the family of fibril-associated collagens with interrupted triple helices. Its biological function has been poorly understood. Here, we used a genome-editing approach to generate a loss-of-function mutant in zebrafish col22a1 Homozygous mutant adults exhibit increased incidence of intracranial hemorrhages, which become more prominent with age and after cardiovascular stress. Homozygous col22a1 mutant embryos show higher sensitivity to cardiovascular stress and increased vascular permeability, resulting in a greater percentage of embryos with intracranial hemorrhages. Mutant embryos also exhibit dilations and irregular structure of cranial vessels. To test whether COL22A1 is associated with vascular disease in humans, we analyzed data from a previous study that performed whole-exome sequencing of 45 individuals from seven families with intracranial aneurysms. The rs142175725 single-nucleotide polymorphism was identified, which segregated with the phenotype in all four affected individuals in one of the families, and affects a highly conserved E736 residue in COL22A1 protein, resulting in E736D substitution. Overexpression of human wild-type COL22A1, but not the E736D variant, partially rescued the col22a1 loss-of-function mutant phenotype in zebrafish embryos. Our data further suggest that the E736D mutation interferes with COL22A1 protein secretion, potentially leading to endoplasmic reticulum stress. Altogether, these results argue that COL22A1 is required to maintain vascular integrity. These data further suggest that mutations in COL22A1 could be one of the risk factors for intracranial aneurysms in humans.
Assuntos
Vasos Sanguíneos/patologia , Colágeno/genética , Aneurisma Intracraniano/genética , Mutação/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Colágeno/metabolismo , Embrião não Mamífero/metabolismo , Estresse do Retículo Endoplasmático , Endotélio Vascular/patologia , Endotélio Vascular/ultraestrutura , Fibroblastos/metabolismo , Fibroblastos/patologia , Gastrulação , Deleção de Genes , Hemorragia/patologia , Homozigoto , Humanos , Aneurisma Intracraniano/patologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura , Regulação para Cima/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismoRESUMO
Giant danios (genus Devario), like zebrafish, are teleosts belonging to the danioninae subfamily of cyprinids. Adult giant danios are used in a variety of investigations aimed at understanding cellular and physiological processes, including heart regeneration. Despite their importance, little is known about development and growth in giant danios, or their cardiac and coronary vessels development. To address this scarcity of knowledge, we performed a systematic study of a giant danio (Devario malabaricus), focusing on its cardiac development, from the segmentation period to ten months post-fertilization. Using light and scanning electron microscopy, we documented that its cardiovascular development and maturation proceed along well defined dynamic and conserved morphogenic patterns. The overall size and cardiovascular expansion of this species was significantly impacted by environmental parameters such as rearing densities. The coronary vasculature began to emerge in the late larval stage. More importantly, we documented two possible loci of initiation of the coronary vasculature in this species, and compared the emergence of the coronaries to that of zebrafish and gourami. This is the first comprehensive study of the cardiac growth in a Devario species, and our findings serve as an important reference for further investigations of cardiac biology using this species.
RESUMO
Lectins are carbohydrate-binding proteins commonly used as biochemical and histochemical tools to study glycoconjugate (glycoproteins, glycolipids) expression patterns in cells, tissues, including mammalian hearts. However, lectins have received little attention in zebrafish ( Danio rerio) and giant danio ( Devario aequipinnatus) heart studies. Here, we sought to determine the binding patterns of six commonly used lectins-wheat germ agglutinin (WGA), Ulex europaeus agglutinin, Bandeiraea simplicifolia lectin (BS lectin), concanavalin A (Con A), Ricinus communis agglutinin I (RCA I), and Lycopersicon esculentum agglutinin (tomato lectin)-in these hearts. Con A showed broad staining in the myocardium. WGA stained cardiac myocyte borders, with binding markedly stronger in the compact heart and bulbus. BS lectin, which stained giant danio coronaries, was used to measure vascular reconstruction during regeneration. However, BS lectin reacted poorly in zebrafish. RCA I stained the compact heart of both fish. Tomato lectin stained the giant danio, and while low reactivity was seen in the zebrafish ventricle, staining was observed in their transitional cardiac myocytes. In addition, we observed unique staining patterns in the developing zebrafish heart. Lectins' ability to reveal differential glycoconjugate expression in giant danio and zebrafish hearts suggests they can serve as simple but important tools in studies of developing, adult, and regenerating fish hearts.
Assuntos
Cyprinidae/metabolismo , Glicoconjugados/metabolismo , Miocárdio/metabolismo , Lectinas de Plantas/química , Animais , Vasos Coronários/metabolismo , Embrião não Mamífero/metabolismo , Ligação Proteica , Coloração e Rotulagem , Peixe-Zebra/metabolismoRESUMO
The remarkable ability of the heart to regenerate has been demonstrated in the zebrafish and giant danio, two fish members of the cyprinid family. Here we use light and electron microscopy to examine the repair response in the heart of another cyprinid, the goldfish (Carassius auratus), following cautery injury to a small portion of its ventricular myocardium. We observed a robust inflammatory response in the first two weeks consisting primarily of infiltrating macrophages, heterophils, and melanomacrophages. These inflammatory cells were identified in the lumen of the spongy heart, within the site of the wound, and attached to endocardial cells adjacent to the site of injury. Marked accumulation of collagen fibers and increased connective tissue were also observed during the first and second weeks in a transition zone between healthy and injured myocardium as well as in adjacent sub-epicardial regions. The accumulation of collagen and connective tissue however did not persist. The presence of capillaries was also noted in the injured area during repair. The replacement of the cauterized region of the ventricle by myocardial tissue was achieved in 6weeks. The presence of ethynyl deoxyuridine-positive cardiac myocytes and partially differentiated cardiac myocytes during repair suggest effective cardiac myocyte driven regeneration mechanisms also operate in the injured goldfish heart, and are similar to those observed in zebrafish and giant danio. Our data suggest the ability for cardiac regeneration may be widely conserved among cyprinids.
Assuntos
Carpa Dourada/fisiologia , Coração/fisiologia , Regeneração , Animais , Colágeno/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Neovascularização FisiológicaRESUMO
The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.
Assuntos
Fibroblastos/ultraestrutura , Miocárdio/citologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Animais , Colágeno/análise , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Peixe-ZebraRESUMO
The paucity of mammalian adult cardiac myocytes (CM) proliferation following myocardial infarction (MI) and the remodeling of the necrotic tissue that ensues, result in non-regenerative repair. In contrast, zebrafish (ZF) can regenerate after an apical resection or cryoinjury of the heart. There is considerable interest in models where regeneration proceeds in the presence of necrotic tissue. We have developed and characterized a cautery injury model in the giant danio (GD), a species closely related to ZF, where necrotic tissue remains part of the ventricle, yet regeneration occurs. By light and transmission electron microscopy (TEM), we have documented four temporally overlapping processes: (1) a robust inflammatory response analogous to that observed in MI, (2) concomitant proliferation of epicardial cells leading to wound closure, (3) resorption of necrotic tissue and its replacement by granulation tissue, and (4) regeneration of the myocardial tissue driven by 5-EDU and [(3) H]thymidine incorporating CMs. In conclusion, our data suggest that the GD possesses robust repair mechanisms in the ventricle and can serve as an important model of cardiac inflammation, remodeling and regeneration.
Assuntos
Miócitos Cardíacos/patologia , Regeneração/fisiologia , Remodelação Ventricular/fisiologia , Peixe-Zebra/fisiologia , Animais , Proliferação de Células , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Modelos Animais de Doenças , Tecido de Granulação/patologia , Inflamação/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Necrose , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Pericárdio/patologia , Timidina/metabolismo , Cicatrização/fisiologiaRESUMO
Recent genetic studies have documented a pivotal growth-regulatory role played by the Cullin 7 (CUL7) E3 ubiquitin ligase complex containing the Fbw8-substrate-targeting subunit, Skp1, and the ROC1 RING finger protein. In this report, we identified insulin receptor substrate 1 (IRS-1), a critical mediator of the insulin/insulin-like growth factor 1 signaling, as a proteolytic target of the CUL7 E3 ligase in a manner that depends on mammalian target of rapamycin and the p70 S6 kinase activities. Interestingly, while embryonic fibroblasts of Cul7-/- mice were found to accumulate IRS-1 and exhibit increased activation of IRS-1's downstream Akt and MEK/ERK pathways, these null cells grew poorly and displayed phenotypes reminiscent of those associated with oncogene-induced senescence. Taken together, our findings demonstrate a key role for the CUL7 E3 in targeting IRS-1 for degradation, a process that may contribute to the regulation of cellular senescence.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Culina/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Senescência Celular , Proteínas Culina/genética , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina , Camundongos , Camundongos Knockout , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TORRESUMO
Many forms of cardiac disease are characterized by cardiomyocyte death due to necrosis, apoptosis and/or oncosis. Recently, the notion of promoting cardiac regeneration as a means to replace damaged heart tissue has engendered considerable interest. One approach to accomplish heart muscle regeneration entails promoting cardiomyocyte cell cycle activity in the surviving myocardium. Genetically modified mice have provided useful model systems to test the efficacy of specific pathways to promote cardiomyocyte proliferation in normal and diseased hearts. For example, expression of a heart-restricted dominant interfering version of p193 (an E3 ubiquitin ligase also known as Cul7) resulted in an induction of cardiomyocyte cell cycle activity at the infarct border zone and ventricular septum 4 weeks after permanent coronary artery occlusion. A concomitant reduction in hypertrophic cardiomyocyte growth was also observed in this model, suggesting that cell cycle activation partially counteracted the adverse ventricular remodelling that occurs post-infarction. In other studies, targeted expression of cyclin D2 promoted cardiomyocyte cell cycle activity in adult hearts. The level of cardiomyocyte cell cycle activity increased after myocardial infarction, ultimately resulting in a marked increase in cardiomyocyte number and a concomitant regression of infarct size. Collectively, these data suggest that modulation of cardiomyocyte cell cycle activity can be exploited to promote regenerative growth in injured hearts.
Assuntos
Ciclo Celular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Animais , Apoptose , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Ciclina D2 , Ciclinas/genética , DNA/metabolismo , Genes Dominantes , Humanos , Modelos Biológicos , Fatores de Tempo , Transgenes , Remodelação VentricularRESUMO
Ischemia-reperfusion injury in the heart is characterized by marked infiltration of neutrophils in the myocardial interstitial space. Studies in human, canine, and murine models have revealed oncostatin M (OSM) expression in infiltrating leukocytes. In an effort to assess possible roles of OSM in the myocardium, we used cardiac fibroblasts (mCFs) isolated from adult mouse heart to determine whether recombinant murine OSM regulates the synthesis and release of MIP2/CXCL2, KC/CXCL1, and LIX/CXCL5, which are three potent neutrophil chemoattractants in the mouse. Our results demonstrate that mCFs express OSM receptors and that, within the IL-6 cytokine family, OSM uniquely induces significant release of KC and LIX in mCFs. In addition, although OSM activates the JAK-signal transducers and activators of transcription and MAPK pathways, we demonstrate that the OSM-mediated CXC chemokine release in mCFs is also dependent on the activation of the phosphatidylinositol 3-kinase pathway.