Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 21(1): 26, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565978

RESUMO

BACKGROUND: Clinical samples are irreplaceable, and their transformation into searchable and reusable digital biobanks is critical for conducting statistically empowered retrospective and integrative research studies. Currently, mainly data-independent acquisition strategies are employed to digitize clinical sample cohorts comprehensively. However, the sensitivity of DIA is limited, which is why selected marker candidates are often additionally measured targeted by parallel reaction monitoring. METHODS: Here, we applied the recently co-developed hybrid-PRM/DIA technology as a new intelligent data acquisition strategy that allows for the comprehensive digitization of rare clinical samples at the proteotype level. Hybrid-PRM/DIA enables enhanced measurement sensitivity for a specific set of analytes of current clinical interest by the intelligent triggering of multiplexed parallel reaction monitoring (MSxPRM) in combination with the discovery-driven digitization of the clinical biospecimen using DIA. Heavy-labeled reference peptides were utilized as triggers for MSxPRM and monitoring of endogenous peptides. RESULTS: We first evaluated hybrid-PRM/DIA in a clinical context on a pool of 185 selected proteotypic peptides for tumor-associated antigens derived from 64 annotated human protein groups. We demonstrated improved reproducibility and sensitivity for the detection of endogenous peptides, even at lower concentrations near the detection limit. Up to 179 MSxPRM scans were shown not to affect the overall DIA performance. Next, we applied hybrid-PRM/DIA for the integrated digitization of biobanked melanoma samples using a set of 30 AQUA peptides against 28 biomarker candidates with relevance in molecular tumor board evaluations of melanoma patients. Within the DIA-detected approximately 6500 protein groups, the selected marker candidates such as UFO, CDK4, NF1, and PMEL could be monitored consistently and quantitatively using MSxPRM scans, providing additional confidence for supporting future clinical decision-making. CONCLUSIONS: Combining PRM and DIA measurements provides a new strategy for the sensitive and reproducible detection of protein markers from patients currently being discussed in molecular tumor boards in combination with the opportunity to discover new biomarker candidates.

2.
J Transl Med ; 18(1): 383, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036618

RESUMO

BACKGROUND: A major obstacle to anti-viral and -tumor cell vaccination and T cell immunotherapy is the ability to produce dendritic cells (DCs) in a suitable clinical setting. It is imperative to develop closed cell culture systems to accelerate the translation of promising DC-based cell therapy products to the clinic. The objective of this study was to investigate whether viral antigen-loaded monocyte-derived DCs (Mo-DCs) capable of eliciting specific T cell activation can be manufactured in fluorinated ethylene propylene (FEP) bags. METHODS: Mo-DCs were generated through a protocol applying cytokine cocktails combined with lipopolysaccharide or with a CMV viral peptide antigen in conventional tissue culture polystyrene (TCPS) or FEP culture vessels. Research-scale (< 10 mL) FEP bags were implemented to increase R&D throughput. DC surface marker profiles, cytokine production, and ability to activate antigen-specific cytotoxic T cells were characterized. RESULTS: Monocyte differentiation into Mo-DCs led to the loss of CD14 expression with concomitant upregulation of CD80, CD83 and CD86. Significantly increased levels of IL-10 and IL-12 were observed after maturation on day 9. Antigen-pulsed Mo-DCs activated antigen-responsive CD8+ cytotoxic T cells. No significant differences in surface marker expression or tetramer-specific T cell activating potency of Mo-DCs were observed between TCPS and FEP culture vessels. CONCLUSIONS: Our findings demonstrate that viral antigen-loaded Mo-DCs produced in downscaled FEP bags can elicit specific T cell responses. In view of the dire clinical need for closed system DC manufacturing, FEP bags represent an attractive option to accelerate the translation of promising emerging DC-based immunotherapies.


Assuntos
Antígenos Virais , Células Dendríticas , Técnicas de Cultura de Células , Monócitos , Politetrafluoretileno/análogos & derivados
3.
Biosens Bioelectron ; 130: 397-407, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253928

RESUMO

The uniformity of the protein patterns, their shape, and the contrast between the fluorescence signal of the pattern and the background, critically modulate the quantitative accuracy of the microarray-derived data. While significant research focused of the identification of the factors that impact the protein microarray patterns, these studies usually have focused on the optimization of one set of these factors, e.g., how the spot uniformity is affected by different additives, or by different surfaces. However, the complex interaction between proteins, carrier fluids, surfaces, and patterning methodologies used would suggest a systematic and more comprehensive study that considers all these parameters, as well as their inter-relationship. The present work compared the patterning of two fluorescently-tagged proteins, i.e., IgG, BSA, on surfaces with different hydrophobicity and chemistry, and printed by inkjet, pin, and microcontact printing (µCP). The quantification of the spot size regularity, its morphology, the signal intensity and its distribution within spots were used to assess the quality of a specific printing method, on a specific surface, with a specific solute of the printed protein. It was found that the optimal uniformity for both droplet-based methods depend on surface chemistry, with glass slides modified with 3-Glycidoxypropyl-dimethoxymethyl silane (GPS) and 3-(Aminopropyl)-triethoxy silane (APTES) exhibiting the greatest uniformity, while uniformity of the µCP patterns was relatively independent of the surface chemistry. For the inkjet and pin printing, the largest fluorescence signal and contrast with the background was found on APTES modified glass slides, whereas for the µCP the fluorescence signal increased with increasing hydrophilicity.


Assuntos
Técnicas Biossensoriais , Imunoglobulina G/química , Análise Serial de Proteínas/métodos , Soroalbumina Bovina/química , Animais , Bovinos , Fluorescência , Vidro/química , Interações Hidrofóbicas e Hidrofílicas , Impressão , Propilaminas/química , Silanos/química , Propriedades de Superfície
4.
Methods Mol Biol ; 1619: 239-261, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674891

RESUMO

Measuring many proteins at once is of great importance to the idea of personalized medicine, in order to get a snapshot of a person's health status. We describe the antibody colocalization microarray (ACM), a variant of antibody microarrays which avoids reagent-induced cross-reactivity by printing individual detection antibodies atop their corresponding capture antibodies. We discuss experimental parameters that are critical for the success of ACM experiments, namely, the printing positional accuracy needed for the two printing rounds and the need for protecting dried spots during the second printing round. Using small sample volumes (less than 30 µL) and small quantities of reagents, up to 108 different targets can be measured in hundreds of samples with great specificity and sensitivity.


Assuntos
Anticorpos , Reações Cruzadas , Análise Serial de Proteínas/métodos , Proteômica/métodos , Anticorpos/imunologia , Antígenos , Reações Cruzadas/imunologia , Imunofluorescência , Humanos , Imunoensaio/métodos , Imunoensaio/normas , Análise Serial de Proteínas/normas , Ligação Proteica/imunologia , Proteínas , Proteômica/normas
5.
Anal Bioanal Chem ; 407(28): 8451-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26345442

RESUMO

Microarrays allow the miniaturization and multiplexing of biological assays while only requiring minute amounts of samples. As a consequence of the small volumes used for spotting and the assays, evaporation often deteriorates the quality, reproducibility of spots, and the overall assay performance. Glycerol is commonly added to antibody microarray printing buffers to decrease evaporation; however, it often decreases the binding of antibodies to the surface, thereby negatively affecting assay sensitivity. Here, combinations of 14 hygroscopic chemicals were used as additives to printing buffers for contact-printed antibody microarrays on four different surface chemistries. The ability of the additives to suppress evaporation was quantified by measuring the residual buffer volume in open quill pins over time. The seven best additives were then printed either individually or as a 1:1 mixture of two additives, and the homogeneity, intensity, and reproducibility of both the spotted protein and of a fluorescently labeled analyte in an assay were quantified. Among the 28 combinations on the four slides, many were found to outperform glycerol, and the best additive mixtures were further evaluated by changing the ratio of the two additives. We observed that the optimal additive mixture was dependent on the slide chemistry, and that it was possible to increase the binding of antibodies to the surface threefold compared to 50 % glycerol, while decreasing whole-slide coefficient of variation to 5.9 %. For the two best slides, improvements were made for both the limit of detection (1.6× and 5.9×, respectively) and the quantification range (1.2× and 2.1×, respectively). The additive mixtures identified here thus help improve assay reproducibility and performance, and might be beneficial to all types of microarrays that suffer from evaporation of the printing buffers.


Assuntos
Imunoensaio/métodos , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Anticorpos/química , Betaína/química , Soluções Tampão , Butileno Glicóis/química , Dimetil Sulfóxido/química , Etilenoglicol/química , Corantes Fluorescentes/química , Glicerol/química , Humanos , Imunoensaio/instrumentação , Interleucina-1beta/análise , Limite de Detecção , Impressão , Receptores Tipo II do Fator de Necrose Tumoral/análise , Reprodutibilidade dos Testes , Soluções , Volatilização , Molhabilidade , Receptor fas/análise
6.
Adv Funct Mater ; 24(26): 4060-4067, 2014 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-25411576

RESUMO

The fabrication of cell-laden structures with anisotropic mechanical properties while having a precise control over the distribution of different cell types within the constructs is important for many tissue engineering applications. Automated textile technologies for making fabrics allow simultaneous control over the color pattern and directional mechanical properties. The use of textile techniques in tissue engineering, however, demands the presence of cell-laden fibers that can withstand the mechanical stresses during the assembly process. Here, the concept of composite living fibers (CLFs) in which a core of load bearing synthetic polymer is coated by a hydrogel layer containing cells or microparticles is introduced. The core thread is drawn sequentially through reservoirs containing a cell-laden prepolymer and a crosslinking reagent. The thickness of the hydrogel layer increases linearly with to the drawing speed and the prepolymer viscosity. CLFs are fabricated and assembled using regular textile processes including weaving, knitting, braiding, winding, and embroidering, to form cell-laden structures. Cellular viability and metabolic activity are preserved during CLF fabrication and assembly, demonstrating the feasibility of using these processes for engineering functional 3D tissue constructs.

7.
Curr Opin Chem Biol ; 18: 29-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24534750

RESUMO

Immunoassays are indispensable for research and clinical analysis, and following the emergence of the omics paradigm, multiplexing of immunoassays is more needed than ever. Cross-reactivity (CR) in multiplexed immunoassays has been unexpectedly difficult to mitigate, preventing scaling up of multiplexing, limiting assay performance, and resulting in inaccurate and even false results, and wrong conclusions. Here, we review CR and its consequences in single and dual antibody single-plex and multiplex assays. We establish a distinction between sample-driven and reagent-driven CR, and describe how it affects the performance of antibody microarrays. Next, we review and evaluate various platforms aimed at mitigating CR, including SOMAmers and protein fractionation-bead assays, as well as dual Ab methods including (i) conventional multiplex assays, (ii) proximity ligation assays, (iii) immuno-mass spectrometry, (iv) sequential multiplex analyte capture, (v) antibody colocalization microarrays and (vi) force discrimination assays.


Assuntos
Anticorpos/análise , Imunoensaio/métodos , Análise em Microsséries/métodos , Anticorpos/imunologia , Reações Cruzadas , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA