Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 132(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642640

RESUMO

The discovery of microRNAs and their role in diseases was a breakthrough that inspired research into microRNAs as drug targets. Cardiovascular diseases are an area in which limitations of conventional pharmacotherapy are highly apparent and where microRNA-based drugs have appreciably progressed into preclinical and clinical testing. In this Review, we summarize the current state of microRNAs as therapeutic targets in the cardiovascular system. We report recent advances in the identification and characterization of microRNAs, their manipulation and clinical translation, and discuss challenges and perspectives toward clinical application.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/terapia , Humanos , MicroRNAs/genética
2.
Nat Commun ; 8(1): 1614, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158499

RESUMO

Chronic cardiac stress induces pathologic hypertrophy and fibrosis of the myocardium. The microRNA-29 (miR-29) family has been found to prevent excess collagen expression in various organs, particularly through its function in fibroblasts. Here, we show that miR-29 promotes pathologic hypertrophy of cardiac myocytes and overall cardiac dysfunction. In a mouse model of cardiac pressure overload, global genetic deletion of miR-29 or antimiR-29 infusion prevents cardiac hypertrophy and fibrosis and improves cardiac function. Targeted deletion of miR-29 in cardiac myocytes in vivo also prevents cardiac hypertrophy and fibrosis, indicating that the function of miR-29 in cardiac myocytes dominates over that in non-myocyte cell types. Mechanistically, we found cardiac myocyte miR-29 to de-repress Wnt signaling by directly targeting four pathway factors. Our data suggests that, cell- or tissue-specific antimiR-29 delivery may have therapeutic value for pathological cardiac remodeling and fibrosis.


Assuntos
Cardiomegalia/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Wnt/metabolismo , Adulto , Idoso , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais , Proteínas Wnt/genética
3.
Mol Ther ; 24(11): 1939-1948, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27545313

RESUMO

Systemic inhibition of miR-21 has proven effective against myocardial fibrosis and dysfunction, while studies in cardiac myocytes suggested a protective role in this cell type. Considering potential implications for therapy, we aimed to determine the cell fraction where miR-21 exerts its pathological activity. We developed a viral vector-based strategy for gene targeting of nonmyocyte cardiac cells in vivo and compared global to cardiac myocyte-specific and nonmyocyte-specific deletion of miR-21 in chronic left ventricular pressure overload. Murine moloney virus and serotype 9 of adeno-associated virus were engineered to encode improved Cre recombinase for genetic deletion in miR-21fl/fl mice. Pericardial injection of murine moloney virus-improved Cre recombinase to neonates achieved highly selective genetic ablation of miR-21 in nonmyocyte cardiac cells, identified as cardiac fibroblasts and endothelial cells. Upon left ventricular pressure overload, cardiac function was only preserved in mice with miR-21 deficiency in nonmyocyte cardiac cells, but not in mice with global or cardiac myocyte-specific ablation. Our data demonstrate that miR-21 exerts its pathologic activity directly in cardiac nonmyocytes and encourage further development of antimiR-21 therapy toward cellular tropism.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Cardiopatias/terapia , Ventrículos do Coração/fisiopatologia , MicroRNAs/genética , Remodelação Ventricular , Animais , Dependovirus/genética , Modelos Animais de Doenças , Deleção de Genes , Técnicas de Inativação de Genes , Células HEK293 , Cardiopatias/genética , Insuficiência Cardíaca , Humanos , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Miócitos Cardíacos/metabolismo
4.
J Mol Cell Cardiol ; 99: 57-64, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27539859

RESUMO

A key response of the myocardium to stress is the secretion of factors with paracrine or endocrine function. Intriguing in this respect is peptidase inhibitor 16 (PI16), a member of the CAP family of proteins which we found to be highly upregulated in cardiac disease. Up to this point, the mechanism of action and physiological function of PI16 remained elusive. Here, we show that PI16 is predominantly expressed by cardiac fibroblasts, which expose PI16 to the interstitium via a glycophosphatidylinositol (-GPI) membrane anchor. Based on a reported genetic association of PI16 and plasma levels of the chemokine chemerin, we investigated whether PI16 regulates post-translational processing of its precursor pro-chemerin. PI16-deficient mice were engineered and found to generate higher levels of processed chemerin than wildtype mice. Purified recombinant PI16 efficiently inhibited cathepsin K, a chemerin-activating protease, in vitro. Moreover, we show that conditioned medium from PI16-overexpressing cells impaired the activation of pro-chemerin. Together, our data indicate that PI16 suppresses chemerin activation in the myocardium and suggest that this circuit may be part of the cardiac stress response.


Assuntos
Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Animais , Catepsina K/metabolismo , Comunicação Celular , Membrana Celular/metabolismo , Quimiocinas/genética , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
5.
PLoS One ; 9(11): e111754, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383878

RESUMO

Pre-mRNA splicing by the spliceosome is an essential step in the maturation of nearly all human mRNAs. Mutations in six spliceosomal proteins, PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, cause retinitis pigmentosa (RP), a disease characterized by progressive photoreceptor degeneration. All splicing factors linked to RP are constituents of the U4/U6.U5 tri-snRNP subunit of the spliceosome, suggesting that the compromised function of this particle may lead to RP. Here, we report the identification of the p.R192H variant of the tri-snRNP factor PRPF4 in a patient with RP. The mutation affects a highly conserved arginine residue that is crucial for PRPF4 function. Introduction of a corresponding mutation into the zebrafish homolog of PRPF4 resulted in a complete loss of function in vivo. A series of biochemical experiments suggested that p.R192H disrupts the binding interface between PRPF4 and its interactor PRPF3. This interferes with the ability of PRPF4 to integrate into the tri-snRNP, as shown in a human cell line and in zebrafish embryos. These data suggest that the p.R192H variant of PRPF4 represents a functional null allele. The resulting haploinsufficiency of PRPF4 compromises the function of the tri-snRNP, reinforcing the notion that this spliceosomal particle is of crucial importance in the physiology of the retina.


Assuntos
Mutação de Sentido Incorreto/genética , Retinose Pigmentar/genética , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Spliceossomos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Embrião não Mamífero/metabolismo , Gangliosídeos/metabolismo , Componentes do Gene , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Linhagem , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Análise de Sequência de DNA , Spliceossomos/metabolismo , Peixe-Zebra
6.
J Clin Invest ; 124(12): 5385-97, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25401477

RESUMO

Acute stimulation of cardiac ß-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained ß-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues.


Assuntos
Cardiomegalia/metabolismo , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Comunicação Parácrina , Receptor A1 de Adenosina/metabolismo , Receptores A2 de Adenosina/metabolismo , Transdução de Sinais , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , AMP Cíclico/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Receptor A1 de Adenosina/genética , Receptores A2 de Adenosina/genética
7.
RNA Biol ; 10(7): 1125-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23696004

RESUMO

MiRNAs are short, non-coding RNAs that regulate gene expression post-transcriptionally through specific binding to mRNA. Deregulation of miRNAs is associated with various diseases and interference with miRNA function has proven therapeutic potential. Most mRNAs are thought to be regulated by multiple miRNAs and there is some evidence that such joint activity is enhanced if a short distance between sites allows for cooperative binding. Until now, however, the concept of cooperativity among miRNAs has not been addressed in a transcriptome-wide approach. Here, we computationally screened human mRNAs for distances between miRNA binding sites that are expected to promote cooperativity. We find that sites with a maximal spacing of 26 nucleotides are enriched for naturally occurring miRNAs compared with control sequences. Furthermore, miRNAs with similar characteristics as indicated by either co-expression within a specific tissue or co-regulation in a disease context are predicted to target a higher number of mRNAs cooperatively than unrelated miRNAs. These bioinformatic data were compared with genome-wide sets of biochemically validated miRNA targets derived by Argonaute crosslinking and immunoprecipitation (HITS-CLIP and PAR-CLIP). To ease further research into combined and cooperative miRNA function, we developed miRco, a database connecting miRNAs and respective targets involved in distance-defined cooperative regulation (mips.helmholtz-muenchen.de/mirco). In conclusion, our findings suggest that cooperativity of miRNA-target interaction is a widespread phenomenon that may play an important role in miRNA-mediated gene regulation.


Assuntos
Sítios de Ligação , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma , Regiões 3' não Traduzidas , Biologia Computacional/métodos , Regulação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Software
8.
Circulation ; 127(21): 2097-106, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23625957

RESUMO

BACKGROUND: Several microRNAs (miRs) have been shown to regulate gene expression in the heart, and dysregulation of their expression has been linked to cardiac disease. miR-378 is strongly expressed in the mammalian heart but so far has been studied predominantly in cancer, in which it regulates cell survival and tumor growth. METHODS AND RESULTS: Here, we report tight control of cardiomyocyte hypertrophy through miR-378. In isolated primary cardiomyocytes, miR-378 was found to be both necessary and sufficient to repress cardiomyocyte hypertrophy. Bioinformatic prediction suggested that factors of the mitogen-activated protein kinase (MAPK) pathway are enriched among miR-378 targets. Using mRNA and protein expression analysis along with luciferase assays, we validated 4 key components of the MAPK pathway as targets of miR-378: MAPK1 itself, insulin-like growth factor receptor 1, growth factor receptor-bound protein 2, and kinase suppressor of ras 1. RNA interference with these targets prevented the prohypertrophic effect of antimiR-378, suggesting their functional relation with miR-378. Because miR-378 significantly decreases in cardiac disease, we sought to compensate for its loss through adeno-associated virus-mediated, cardiomyocyte-targeted expression of miR-378 in an in vivo model of cardiac hypertrophy (pressure overload by thoracic aortic constriction). Restoration of miR-378 levels significantly attenuated thoracic aortic constriction-induced cardiac hypertrophy and improved cardiac function. CONCLUSIONS: Our data identify miR-378 as a regulator of cardiomyocyte hypertrophy, which exerts its activity by suppressing the MAPK signaling pathway on several distinct levels. Restoration of disease-associated loss of miR-378 through cardiomyocyte-targeted adeno-associated virus-miR-378 may prove to be an effective therapeutic strategy in myocardial disease.


Assuntos
Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , MicroRNAs/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Transdução de Sinais/fisiologia , Adenoviridae/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Proteína Adaptadora GRB2/antagonistas & inibidores , Proteína Adaptadora GRB2/fisiologia , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Quinases/fisiologia , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/fisiologia
9.
J Mol Cell Cardiol ; 52(1): 13-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21801730

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that control expression of complementary target mRNAs. A growing number of miRNAs has been implicated in the pathogenesis of cardiac diseases, mostly based not on functional data, but on the observation that they are dysregulated in diseased myocardium. Consequently, our knowledge regarding a potential cardiac role of the majority of miRNAs is limited. Here, we report the development of an assay format that allows the simultaneous analysis of several hundred molecules with regard to their phenotypic effect on primary rat cardiomyocytes. Using automated microscopy and an edge detection algorithm, this assay achieved high reproducibility and a robust assessment of cardiomyocyte size as a key parameter. Screening a library of synthetic miRNAs revealed several miRNAs previously not recognized as pro- or anti-hypertrophic. Out of these, we selected nine miRNAs and confirmed the pro-hypertrophic potential of miR-22, miR-30c, miR-30d, miR-212, miR-365 and the anti-hypertrophic potential of miR-27a, miR-27b and miR-133a. Quantitative analysis of the expression level of pro-hypertrophic miRNAs in primary cardiomyocytes indicated a rather low level of correlation of the phenotypic effects of individual miRNAs and their expression level. This assay allows the automated determination of cell size in primary cardiomyocytes and permitted the identification of a set of miRNAs capable of regulating cardiomyocyte hypertrophy. Elucidating their mechanism of action should provide insight into mechanisms underlying the cardiomyocyte hypertrophic response. This article is part of a Special Issue entitled 'Possible Editorial'.


Assuntos
Ensaios de Triagem em Larga Escala , MicroRNAs/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fenótipo , Animais , Crescimento Celular , Separação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Transfecção
10.
Circulation ; 124(7): 796-805, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21810664

RESUMO

BACKGROUND: Cardiomyocytes use Ca2+ not only in excitation-contraction coupling but also as a signaling molecule promoting, for example, cardiac hypertrophy. It is largely unclear how Ca2+ triggers signaling in cardiomyocytes in the presence of the rapid and large Ca2+ fluctuations that occur during excitation-contraction coupling. A potential route is store-operated Ca2+ entry, a drug-inducible mechanism for Ca2+ signaling that requires stromal interaction molecule 1 (STIM1). Store-operated Ca2+ entry can also be induced in cardiomyocytes, which prompted us to study STIM1-dependent Ca2+ entry with respect to cardiac hypertrophy in vitro and in vivo. METHODS AND RESULTS: Consistent with earlier reports, we found drug-inducible store-operated Ca2+ entry in neonatal rat cardiomyocytes, which was dependent on STIM1. Although this STIM1-dependent, drug-inducible store-operated Ca2+ entry was only marginal in adult cardiomyocytes isolated from control hearts, it increased significantly in cardiomyocytes isolated from adult rats that had developed compensated cardiac hypertrophy after abdominal aortic banding. Moreover, we detected an inwardly rectifying current in hypertrophic cardiomyocytes that occurs under native conditions (i.e., in the absence of drug-induced store depletion) and is dependent on STIM1. By manipulating its expression, we found STIM1 to be both sufficient and necessary for cardiomyocyte hypertrophy in vitro and in the adult heart in vivo. Stim1 silencing by adeno-associated viruses of serotype 9-mediated gene transfer protected rats from pressure overload-induced cardiac hypertrophy. CONCLUSION: By controlling a previously unrecognized sarcolemmal current, STIM1 promotes cardiac hypertrophy.


Assuntos
Sinalização do Cálcio/fisiologia , Cardiomegalia/fisiopatologia , Glicoproteínas de Membrana/fisiologia , Miócitos Cardíacos/fisiologia , Adenoviridae/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Cafeína/farmacologia , Cálcio/metabolismo , Canais de Cálcio , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Inativação Gênica , Técnicas de Transferência de Genes , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp , Inibidores de Fosfodiesterase/farmacologia , Ratos , Sarcolema/metabolismo , Molécula 1 de Interação Estromal , Tapsigargina/farmacologia
11.
Hum Mol Genet ; 20(2): 368-77, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21051334

RESUMO

Retinitis pigmentosa (RP) is a common hereditary eye disease that causes blindness due to a progressive loss of photoreceptors in the retina. RP can be elicited by mutations that affect the tri-snRNP subunit of the pre-mRNA splicing machinery, but how defects in this essential macromolecular complex transform into a photoreceptor-specific phenotype is unknown. We have modeled the disease in zebrafish by silencing the RP-associated splicing factor Prpf31 and observed detrimental effects on visual function and photoreceptor morphology. Despite reducing the level of a constitutive splicing factor, no general defects in gene expression were found. Instead, retinal genes were selectively affected, providing the first in vivo link between mutations in splicing factors and the RP phenotype. Silencing of Prpf4, a splicing factor hitherto unrelated to RP, evoked the same defects in vision, photoreceptor morphology and retinal gene expression. Hence, various routes affecting the tri-snRNP can elicit tissue-specific gene expression defects and lead to the RP phenotype.


Assuntos
Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Retinose Pigmentar/patologia , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Haploinsuficiência/genética , Mutação , Especificidade de Órgãos , Fenótipo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Splicing de RNA/genética , Retina/metabolismo , Retina/fisiopatologia , Retinose Pigmentar/genética
12.
Hum Mol Genet ; 18(7): 1288-300, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19158098

RESUMO

Distal spinal muscular atrophy type 1 (DSMA1) is an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. In this disease, the degeneration of alpha-motoneurons is caused by mutations in the immunoglobulin mu-binding protein 2 (IGHMBP2). This protein has been implicated in DNA replication, pre-mRNA splicing and transcription, but its precise function in all these processes has remained elusive. We have purified catalytically active recombinant IGHMBP2, which has enabled us to assess its enzymatic properties and to identify its cellular targets. Our data reveal that IGHMBP2 is an ATP-dependent 5' --> 3' helicase, which unwinds RNA and DNA duplices in vitro. Importantly, this helicase localizes predominantly to the cytoplasm of neuronal and non-neuronal cells and associates with ribosomes. DSMA1-causing amino acid substitutions in IGHMBP2 do not affect ribosome binding yet severely impair ATPase and helicase activity. We propose that IGHMBP2 is functionally linked to translation, and that mutations in its helicase domain interfere with this function in DSMA1 patients.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Atrofia Muscular Espinal/enzimologia , Ribossomos/enzimologia , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Extratos Celulares , Linhagem Celular Tumoral , DNA Helicases/química , Proteínas de Ligação a DNA/química , Ativação Enzimática , Humanos , Camundongos , Proteínas Mutantes/metabolismo , Ligação Proteica , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/química
13.
Hum Mol Genet ; 17(20): 3236-46, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18664458

RESUMO

Tudor domains are widespread among proteins involved in RNA metabolism, but only in a few cases their cellular function has been analyzed in detail. Here, we report on the characterization of the ubiquitously expressed Tudor domain containing protein Tdrd3. Apart from its Tudor domain, we show that Tdrd3 possesses an oligosaccharide/nucleotide binding fold (OB-fold) and an ubiquitin associated domain capable of binding tetra-ubiquitin. A set of biochemical experiments revealed an interaction of Tdrd3 with FMRP, the product of the gene affected in Fragile X syndrome, and its autosomal homologs FXR1 and FXR2. FMRP has been implicated in the translational regulation of target mRNAs and shown to be a component of stress granules (SG). We demonstrate that overexpression of Tdrd3 in cells induces the formation of SGs and as a result leads to its co-localization with endogenous FMRP in these structures. Interestingly, the disease-associated FMRP missense mutation I304N identified in a Fragile X patient severely impairs the interaction with Tdrd3 in biochemical experiments. We propose a contribution of Tdrd3 to FMRP-mediated translational repression and suggest that the loss of the FMRP-Tdrd3 interaction caused by the I304N mutation might contribute to the pathogenesis of Fragile X syndrome.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Citosol/metabolismo , Síndrome do Cromossomo X Frágil/etiologia , Células HeLa , Humanos , Técnicas In Vitro , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
14.
Trends Mol Med ; 12(3): 113-21, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16473550

RESUMO

Degenerated motor neurons in the spinal cord are the pathological hallmark of spinal muscular atrophy (SMA). SMA is caused by mutations in the ubiquitously expressed survival motor neuron 1 (SMN1) gene, which lead to reduced levels of functional SMN protein. Many different functions have been assigned to SMN, including assembly of ribonucleoproteins (RNPs), splicing, transcription and axonal mRNA transport. Recently, tissue from SMA patients and animal models has been used to determine which function of SMN is affected in SMA patients. A surprising picture has emerged: the impaired assembly of RNP subunits of the spliceosome seems to be responsible for SMA pathogenesis. Here, we present a model of how this defect might cause motor-neuron degeneration and consider potential therapies.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Atrofia Muscular Espinal , Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA , Ribonucleoproteínas/metabolismo , Processamento Alternativo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/fisiopatologia , Atrofia Muscular Espinal/terapia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Proteínas do Complexo SMN , Proteína 1 de Sobrevivência do Neurônio Motor
15.
Genes Dev ; 19(19): 2320-30, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16204184

RESUMO

Spinal muscular atrophy (SMA) is a motoneuron disease caused by reduced levels of survival motoneuron (SMN) protein. Previous studies have assigned SMN to uridine-rich small nuclear ribonucleoprotein particle (U snRNP) assembly, splicing, transcription, and RNA localization. Here, we have used gene silencing to assess the effect of SMN protein deficiency on U snRNP metabolism in living cells and organisms. In HeLa cells, we show that reduction of SMN to levels found in SMA patients impairs U snRNP assembly. In line with this, induced silencing of SMN expression in Xenopus laevis or zebrafish arrested embryonic development. Under less severe knock-down conditions, zebrafish embryos proceeded through development yet exhibited dramatic SMA-like motor axon degeneration. The same was observed after silencing two other essential factors in the U snRNP assembly pathway, Gemin2 and pICln. Importantly, the injection of purified U snRNPs into either SMN- or Gemin2-deficient embryos of Xenopus and zebrafish prevented developmental arrest and motoneuron degeneration, respectively. These findings suggest that motoneuron degeneration in SMA patients is a direct consequence of impaired production of U snRNPs.


Assuntos
Atrofia Muscular Espinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Interferência de RNA , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Peixe-Zebra/embriologia , Animais , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Embrião não Mamífero/embriologia , Embrião não Mamífero/patologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleares Pequenas/genética , Xenopus laevis , Peixe-Zebra/genética
16.
RNA ; 11(5): 598-608, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15840814

RESUMO

The U5 snRNP plays an essential role in both U2- and U12-dependent splicing. Here, we have characterized a 52-kDa protein associated with the human U5 snRNP, designated U5-52K. Protein sequencing revealed that U5-52K is identical to the CD2BP2, which interacts with the cytoplasmic portion of the human T-cell surface protein CD2. Consistent with it associating with an snRNP, immunofluorescence studies demonstrated that the 52K protein is predominantly located in the nucleoplasm of HeLa cells, where it overlaps, at least in part, with splicing-factor compartments (or "speckles"). We further demonstrate that the 52K protein is a constituent of the 20S U5 snRNP, but is not found in U4/U6.U5 tri-snRNPs. Thus, it is the only 20S U5-specific protein that is not integrated into the tri-snRNP and resembles, in this respect, the U4/U6 di-snRNP assembly factor Prp24p/p110. Yeast two-hybrid screening and pulldown assays revealed that the 52K protein interacts with the U5-specific 102K and 15K proteins, suggesting that these interactions are responsible for its integration into the U5 particle. The N-terminal two-thirds of 52K interact with the 102K protein, whereas its C-terminal GYF-domain binds the 15K protein. As the latter lacks a proline-rich tract, our data indicate that a GYF-domain can also engage in specific protein-protein interactions in a polyproline-independent manner. Interestingly, the U5-102K protein has been shown previously to play an essential role in tri-snRNP formation, binding the U4/U6-61K protein. The interaction of 52K with a tri-snRNP bridging protein, coupled with its absence from the tri-snRNP, suggests it might function in tri-snRNP assembly.


Assuntos
Proteínas de Transporte/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas de Transporte/química , Núcleo Celular/metabolismo , Sequência Conservada , Células HeLa , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Peso Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Transporte Proteico , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA