Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
ACS Omega ; 8(48): 45774-45778, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075828

RESUMO

After the biotransformation of xenobiotics in the human body, the biological activity of the metabolites may differ from the activity of parent compounds. Therefore, to assess the overall biological activity of a drug-like compound, it is important to take into account its metabolites and their biological activity. We developed MetaTox 2.0-an updated version of the MetaTox web application that was able to predict the metabolites of xenobiotics. Innovations include estimating the biological activity profile of a compound and taking into account its metabolites. The estimation is based on the PASS (prediction of activity spectra for substances) algorithm and on the latest version of the training set covering over 1900 biological activities predicted with an average accuracy exceeding 0.97. Also, MetaTox 2.0 allows the search for similar substances among more than 2000 drugs with known metabolic networks, which were extracted from the ChEMBL, MetXBIODB, and DrugBank databases. MetaTox 2.0 is freely available on the web at https://www.way2drug.com/metatox.

2.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139069

RESUMO

Auditory neuropathy spectrum disorder (ANSD) associated with mutations of the OTOF gene is one of the common types of sensorineural hearing loss of a hereditary nature. Due to its high genetic heterogeneity, ANSD is considered one of the most difficult hearing disorders to diagnose. The dataset from 270 known annotated single amino acid substitutions (SAV) related to ANSD was created. It was used to estimate the accuracy of pathogenicity prediction using the known (from dbNSFP4.4) method and a new one. The new method (ConStruct) for the creation of the protein-centric classification model is based on the use of Random Forest for the analysis of missense variants in exons of the OTOF gene. A system of predictor variables was developed based on the modern understanding of the structure and function of the otoferlin protein and reflecting the location of changes in the tertiary structure of the protein due to mutations in the OTOF gene. The conservation values of nucleotide substitutions in genomes of 100 vertebrates and 30 primates were also used as variables. The average prediction of balanced accuracy and the AUC value calculated by the 5-fold cross-validation procedure were 0.866 and 0.903, respectively. The model shows good results for interpreting data from the targeted sequencing of the OTOF gene and can be implemented as an auxiliary tool for the diagnosis of ANSD in the early stages of ontogenesis. The created model, together with the results of the pathogenicity prediction of SAVs via other known accurate methods, were used for the evaluation of a manually created set of 1302 VUS related to ANSD. Based on the analysis of predicted results, 16 SAVs were selected as the new most probable pathogenic variants.


Assuntos
Perda Auditiva Central , Perda Auditiva Neurossensorial , Proteínas de Membrana , Animais , Perda Auditiva Central/diagnóstico , Perda Auditiva Central/genética , Perda Auditiva Neurossensorial/genética , Mutação , Mutação de Sentido Incorreto , Proteínas de Membrana/genética , Humanos
3.
Viruses ; 15(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005921

RESUMO

Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and expenses involved when the prescribed antiretroviral therapy is ineffective in the treatment of infection caused by the human immunodeficiency virus type 1 (HIV-1). We propose two machine learning methods and the appropriate models for predicting HIV drug resistance related to amino acid substitutions in HIV targets: (i) k-mers utilizing the random forest and the support vector machine algorithms of the scikit-learn library, and (ii) multi-n-grams using the Bayesian approach implemented in MultiPASSR software. Both multi-n-grams and k-mers were computed based on the amino acid sequences of HIV enzymes: reverse transcriptase and protease. The performance of the models was estimated by five-fold cross-validation. The resulting classification models have a relatively high reliability (minimum accuracy for the drugs is 0.82, maximum: 0.94) and were used to create a web application, HVR (HIV drug Resistance), for the prediction of HIV drug resistance to protease inhibitors and nucleoside and non-nucleoside reverse transcriptase inhibitors based on the analysis of the amino acid sequences of the appropriate HIV proteins from clinical samples.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Teorema de Bayes , Substituição de Aminoácidos , Reprodutibilidade dos Testes , Transcriptase Reversa do HIV/genética , Inibidores da Transcriptase Reversa/farmacologia , Infecções por HIV/tratamento farmacológico , Farmacorresistência Viral/genética , Protease de HIV/genética
4.
Life (Basel) ; 13(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37763211

RESUMO

Drug resistance to anticancer drugs is a serious complication in patients with cancer. Typically, drug resistance occurs due to amino acid substitutions (AAS) in drug target proteins. The study aimed at developing and validating a new approach to the creation of structure-property relationships (SPR) classification models to predict AASs leading to drug resistance to inhibitors of tyrosine-protein kinase ABL1. The approach was based on the representation of AASs as peptides described in terms of structural formulas. The data on drug-resistant and non-resistant variants of AAS for two isoforms of ABL1 were extracted from the COSMIC database. The given training sets (approximately 700 missense variants) were used for the creation of SPR models in MultiPASS software based on substructural atom-centric multiple neighborhoods of atom (MNA) descriptors for the description of the structural formula of protein fragments and a Bayesian-like algorithm for revealing structure-property relationships. It was found that MNA descriptors of the 6th level and peptides from 11 amino acid residues were the best combination for ABL1 isoform 1 with the prediction accuracy (AUC) of resistance to imatinib (0.897) and dasatinib (0.996). For ABL1 isoform 2 (resistance to imatinib), the best combination was MNA descriptors of the 6th level, peptides form 15 amino acids (AUC value was 0.909). The prediction of possible drug-resistant AASs was made for dbSNP and gnomAD data. The six selected most probable imatinib-resistant AASs were additionally validated by molecular modeling and docking, which confirmed the possibility of resistance for the E334V and T392I variants.

5.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298431

RESUMO

Depression and schizophrenia are two highly prevalent and severely debilitating neuropsychiatric disorders. Both conventional antidepressant and antipsychotic pharmacotherapies are often inefficient clinically, causing multiple side effects and serious patient compliance problems. Collectively, this calls for the development of novel drug targets for treating depressed and schizophrenic patients. Here, we discuss recent translational advances, research tools and approaches, aiming to facilitate innovative drug discovery in this field. Providing a comprehensive overview of current antidepressants and antipsychotic drugs, we also outline potential novel molecular targets for treating depression and schizophrenia. We also critically evaluate multiple translational challenges and summarize various open questions, in order to foster further integrative cross-discipline research into antidepressant and antipsychotic drug development.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/efeitos adversos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/induzido quimicamente
6.
Immunology ; 169(4): 447-453, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929656

RESUMO

The search for the relationships between CDR3 TCR sequences and epitopes or MHC types is a challenging task in modern immunology. We propose a new approach to develop the classification models of structure-activity relationships (SAR) using molecular fragment descriptors MNA (Multilevel Neighbourhoods of Atoms) to represent CDR3 TCR sequences and the naïve Bayes classifier algorithm. We have created the freely available TCR-Pred web application (http://way2drug.com/TCR-pred/) to predict the interactions between α chain CDR3 TCR sequences and 116 epitopes or 25 MHC types, as well as the interactions between ß chain CDR3 TCR sequences and 202 epitopes or 28 MHC types. The TCR-Pred web application is based on the data (more 250 000 unique CDR3 TCR sequences) from VDJdb, McPAS-TCR, and IEDB databases and the proposed approach. The average AUC values of the prediction accuracy calculated using a 20-fold cross-validation procedure varies from 0.857 to 0.884. The created web application may be useful in studies related with T-cell profiling based on CDR3 TCR sequences.


Assuntos
Software , Linfócitos T , Epitopos , Teorema de Bayes , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta
7.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768784

RESUMO

Next Generation Sequencing (NGS) technologies are rapidly entering clinical practice. A promising area for their use lies in the field of newborn screening. The mass screening of newborns using NGS technology leads to the discovery of a large number of new missense variants that need to be assessed for association with the development of hereditary diseases. Currently, the primary analysis and identification of pathogenic variations is carried out using bioinformatic tools. Although extensive efforts have been made in the computational approach to variant interpretation, there is currently no generally accepted pathogenicity predictor. In this study, we used the sequence-structure-property relationships (SSPR) approach, based on the representation of protein fragments by molecular structural formula. The approach predicts the pathogenic effect of single amino acid substitutions in proteins related with twenty-five monogenic heritable diseases from the Uniform Screening Panel for Major Conditions recommended by the Advisory Committee on Hereditary Disorders in Newborns and Children. In order to create SSPR models of classification, we modified a piece of cheminformatics software, MultiPASS, that was originally developed for the prediction of activity spectra for drug-like substances. The created SSPR models were compared with traditional bioinformatic tools (SIFT 4G, Polyphen-2 HDIV, MutationAssessor, PROVEAN and FATHMM). The average AUC of our approach was 0.804 ± 0.040. Better quality scores were achieved for 15 from 25 proteins with a significantly higher accuracy for some proteins (IVD, HADHB, HBB). The best SSPR models of classification are freely available in the online resource SAV-Pred (Single Amino acid Variants Predictor).


Assuntos
Triagem Neonatal , Software , Recém-Nascido , Criança , Humanos , Substituição de Aminoácidos , Mutação de Sentido Incorreto , Biologia Computacional
8.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675202

RESUMO

In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds. Here, we present a new version of this web application: CLC-Pred 2.0. It also employs the PASS (Prediction of Activity Spectra for Substance) approach based on substructural atom centric MNA descriptors and a Bayesian algorithm. CLC-Pred 2.0 provides three types of qualitative prediction: (1) cytotoxicity against 391 tumor and 47 normal human cell lines based on ChEMBL and PubChem data (128,545 structures) with a mean accuracy of prediction (AUC), calculated by the leave-one-out (LOO CV) and the 20-fold cross-validation (20F CV) procedures, of 0.925 and 0.923, respectively; (2) cytotoxicity against an NCI60 tumor cell-line panel based on the Developmental Therapeutics Program's NCI60 data (22,726 structures) with different thresholds of IG50 data (100, 10 and 1 nM) and a mean accuracy of prediction from 0.870 to 0.945 (LOO CV) and from 0.869 to 0.942 (20F CV), respectively; (3) 2170 molecular mechanisms of actions based on ChEMBL and PubChem data (656,011 structures) with a mean accuracy of prediction 0.979 (LOO CV) and 0.978 (20F CV). Therefore, CLC-Pred 2.0 is a significant extension of the capabilities of the initial web application.


Assuntos
Antineoplásicos , Software , Humanos , Teorema de Bayes , Antineoplásicos/farmacologia , Antineoplásicos/química , Prednisona , Linhagem Celular Tumoral
9.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364369

RESUMO

The synthesis of the products of the 1,3-propanesultone ring opening during its interaction with amides of pyridinecarboxylic acids has been carried out. The dependence of the yield of the reaction products on the position (ortho-, meta-, para-) of the substituent in the heteroaromatic fragment and temperature condition was revealed. In contrast to the meta- and para-substituted substrates, the reaction involving ortho-derivatives at the boiling point of methanol unexpectedly led to the formation of a salt. On the basis of spectroscopic, X-Ray, and quantum-chemical calculation data, a model of the transition-state, as well as a mechanism for this alkylation reaction of pyridine carboxamides with sultone were proposed in order to explain the higher yields obtained with the nicotinamide and its N-methyl analog compared to ortho or meta parents. Based on the analysis of ESP maps, the positions of the binding sites of reagents with a potential complexing agent in space were determined. The in silico evaluation of possible biological activity showed that the synthetized compounds revealed some promising pharmacological effects and low acute toxicity.


Assuntos
Amidas , Piridinas , Piridinas/química , Amidas/química , Betaína , Alquilação
10.
Comput Biol Chem ; 98: 107674, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430543

RESUMO

Prediction of protein-ligand interaction is necessary for drug design, gene regulatory networks investigation, and chemical probes detection. The existing methods commonly demonstrate high prediction accuracy for the particular groups of protein and their ligands. We developed an approach suited for the wider applicability and tested it on three dataset types significantly differing by protein homology. The study included three typical scenarios of assessing the target-ligand interaction: 1st - predicting protein targets by ligand structures' comparisons; 2nd - predicting ligands by target sequences' comparisons; 3rd - predicting both the uncharacterized targets and ligands with the fuzzy coefficients based on ligand comparisons. The 1st scenario implemented showed a high prediction accuracy of 0.96-0.99, providing fuzzy coefficients of target-ligand interactions in the 3rd scenario. Testing by 2nd scenario displayed the accuracy of 0.97-0.99 for predicting within the particular protein families, sets non-ordered by protein homology, and accuracy higher than 0.90 for most HIV sets, each presenting the close mutant proteins differing by point substitutions. The 3rd scenario displayed that fuzzy classification can reveal reasonable accuracy 0.86-0.94 at simulated data incompleteness. Thus, our approach provides high prediction accuracy with the wide applicability domain, including data differing in heterogeneity and completeness.


Assuntos
Desenho de Fármacos , Proteínas , Sítios de Ligação , Ligantes , Ligação Proteica , Proteínas/química
11.
Chem Res Toxicol ; 35(3): 402-411, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35172101

RESUMO

Assessment of structure-activity relationships (SARs) for predicting severe drug-induced liver injury (DILI) is essential since in vivo and in vitro preclinical methods cannot detect many druglike compounds disrupting liver functions. To date, plenty of SAR models for the prediction of DILI have been developed; however, none of them considered the route of drug administration and daily dose, which may introduce significant bias into prediction results. We have created a dataset of 617 drugs with parenteral and oral administration routes and consistent information on DILI severity. We have found a clear relationship between route, dose, and DILI severity. According to SAR, nearly 40% of moderate- and non-DILI-causing drugs would cause severe DILI if they were administered at high oral doses. We have proposed the following approach to predict severe DILI. New compounds recommended to be used at low oral doses (<∼10 mg daily), or parenterally, can be considered not causing severe DILI. DILI for compounds administered at medium oral doses (∼10-100 mg daily; 22.2% of drugs under consideration) can be considered unpredictable because reasonable SAR models were not obtained due to the small size and heterogeneity of the corresponding dataset. The DILI potential of the compounds recommended to be used at high oral doses (more than ∼100 mg daily) can be estimated using SAR modeling. The balanced accuracy of the approach calculated by a 10-fold cross-validation procedure is 0.803. The developed approach can be used to estimate severe DILI for druglike compounds proposed to use at low and high oral doses or parenterally at the early stages of drug development.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Administração Oral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Técnicas In Vitro , Preparações Farmacêuticas/química
12.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684709

RESUMO

We performed an in silico, in vitro, and in vivo assessment of a potassium 2-[2-(2-oxo-4-phenylpyrrolidin-1-yl) acetamido]ethanesulfonate (compound 1) as a potential prodrug for cognitive function improvement in ischemic brain injury. Using in silico methods, we predicted the pharmacological efficacy and possible safety in rat models. In addition, in silico data showed neuroprotective features of compound 1, which were further supported by in vitro experiments in a glutamate excitotoxicity-induced model in newborn rat cortical neuron cultures. Next, we checked whether compound 1 is capable of crossing the blood-brain barrier in intact and ischemic animals. Compound 1 improved animal behavior both in intact and ischemic rats and, even though the concentration in intact brains was low, we still observed a significant anxiety reduction and activity escalation. We used molecular docking and molecular dynamics to support our hypothesis that compound 1 could affect the AMPA receptor function. In a rat model of acute focal cerebral ischemia, we studied the effects of compound 1 on the behavior and neurological deficit. An in vivo experiment demonstrated that compound 1 significantly reduced the neurological deficit and improved neurological symptom regression, exploratory behavior, and anxiety. Thus, here, for the first time, we show that compound 1 can be considered as an agent for restoring cognitive functions.


Assuntos
AVC Isquêmico/tratamento farmacológico , Pirrolidinas/química , Pirrolidinas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Isquemia Encefálica , Cognição/efeitos dos fármacos , Cognição/fisiologia , Modelos Animais de Doenças , Ácido Glutâmico/farmacologia , Infarto da Artéria Cerebral Média , AVC Isquêmico/fisiopatologia , Masculino , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Cultura Primária de Células , Pirrolidinas/síntese química , Ratos , Ratos Wistar , Acidente Vascular Cerebral
13.
Pharmaceutics ; 13(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924315

RESUMO

Drug-drug interactions (DDIs) can cause drug toxicities, reduced pharmacological effects, and adverse drug reactions. Studies aiming to determine the possible DDIs for an investigational drug are part of the drug discovery and development process and include an assessment of the DDIs potential mediated by inhibition or induction of the most important drug-metabolizing cytochrome P450 isoforms. Our study was dedicated to creating a computer model for prediction of the DDIs mediated by the seven most important P450 cytochromes: CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, and CYP3A4. For the creation of structure-activity relationship (SAR) models that predict metabolism-mediated DDIs for pairs of molecules, we applied the Prediction of Activity Spectra for Substances (PASS) software and Pairs of Substances Multilevel Neighborhoods of Atoms (PoSMNA) descriptors calculated based on structural formulas. About 2500 records on DDIs mediated by these cytochromes were used as a training set. Prediction can be carried out both for known drugs and for new, not-yet-synthesized substances. The average accuracy of the prediction of DDIs mediated by various isoforms of cytochrome P450 estimated by leave-one-out cross-validation (LOO CV) procedures was about 0.92. The SAR models created are publicly available as a web resource and provide predictions of DDIs mediated by the most important cytochromes P450.

14.
Sci Rep ; 10(1): 257, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937840

RESUMO

Dementia is a major cause of disability and dependency among older people. If the lives of people with dementia are to be improved, research and its translation into druggable target are crucial. Ancient systems of healthcare (Ayurveda, Siddha, Unani and Sowa-Rigpa) have been used from centuries for the treatment vascular diseases and dementia. This traditional knowledge can be transformed into novel targets through robust interplay of network pharmacology (NetP) with reverse pharmacology (RevP), without ignoring cutting edge biomedical data. This work demonstrates interaction between recent and traditional data, and aimed at selection of most promising targets for guiding wet lab validations. PROTEOME, DisGeNE, DISEASES and DrugBank databases were used for selection of genes associated with pathogenesis and treatment of vascular dementia (VaD). The selection of new potential drug targets was made by methods of NetP (DIAMOnD algorithm, enrichment analysis of KEGG pathways and biological processes of Gene Ontology) and manual expert analysis. The structures of 1976 phytomolecules from the 573 Indian medicinal plants traditionally used for the treatment of dementia and vascular diseases were used for computational estimation of their interactions with new predicted VaD-related drug targets by RevP approach based on PASS (Prediction of Activity Spectra for Substances) software. We found 147 known genes associated with vascular dementia based on the analysis of the databases with gene-disease associations. Six hundred novel targets were selected by NetP methods based on 147 gene associations. The analysis of the predicted interactions between 1976 phytomolecules and 600 NetP predicted targets leaded to the selection of 10 potential drug targets for the treatment of VaD. The translational value of these targets is discussed herewith. Twenty four drugs interacting with 10 selected targets were identified from DrugBank. These drugs have not been yet studied for the treatment of VaD and may be investigated in this field for their repositioning. The relation between inhibition of two selected targets (GSK-3, PTP1B) and the treatment of VaD was confirmed by the experimental studies on animals and reported separately in our recent publications.


Assuntos
Demência Vascular/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Terapia de Alvo Molecular , Bases de Dados Factuais , Farmacologia , Interface Usuário-Computador
15.
J Chem Inf Model ; 59(11): 4513-4518, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31661960

RESUMO

Discovery of new antibacterial agents is a never-ending task of medicinal chemistry. Every new drug brings significant improvement to patients with bacterial infections, but prolonged usage of antibacterials leads to the emergence of resistant strains. Therefore, novel active structures with new modes of action are required. We describe a web application called AntiBac-Pred aimed to help users in the rational selection of the chemical compounds for experimental studies of antibacterial activity. This application is developed using antibacterial activity data available in ChEMBL and PASS software. It allows users to classify chemical structures of interest into growth inhibitors or noninhibitors of 353 different bacteria strains, including both resistant and nonresistant ones.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Descoberta de Drogas , Software , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Descoberta de Drogas/métodos , Humanos , Internet
16.
J Chem Inf Model ; 59(2): 713-730, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30688458

RESUMO

Numerous studies have been published in recent years with acceptable quantitative structure-activity relationship (QSAR) modeling based on heterogeneous data. In many cases, the training sets for QSAR modeling were constructed from compounds tested by different biological assays, contradicting the opinion that QSAR modeling should be based on the data measured by a single protocol. We attempted to develop approaches that help to determine how heterogeneous data should be used for the creation of QSAR models on the basis of different sets of compounds tested by different experimental methods for the same target and the same endpoint. To this end, more than 100 QSAR models for the IC50 values of ligands interacting with cyclooxygenase 1,2 (COX) and seed lipoxygenase (LOX), obtained from ChEMBL database were created using the GUSAR software. The QSAR models were tested on the external set, including 26 new thiazolidinone derivatives, which were experimentally tested for COX-1,2/LOX inhibition. The IC50 values of the derivatives varied from 89 µM to 26 µM for LOX, from 200 µM to 0.018 µM for COX-1, and from 210 µM to 1 µM for COX-2. This study showed that the accuracy of the models is dependent on the distribution of IC50 values of low activity compounds in the training sets. In the most cases, QSAR models created based on the combined training sets had advantages in comparison with QSAR models, based on a single publication. We introduced a new method of combination of quantitative data from different experimental studies based on the data of reference compounds, which was called "scaling".


Assuntos
Quimioinformática/métodos , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Relação Quantitativa Estrutura-Atividade , Ciclo-Oxigenase 1/metabolismo , Humanos , Concentração Inibidora 50 , Glycine max/enzimologia
17.
Curr Top Med Chem ; 19(5): 319-336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30674264

RESUMO

Drug-drug interaction (DDI) is the phenomenon of alteration of the pharmacological activity of a drug(s) when another drug(s) is co-administered in cases of so-called polypharmacy. There are three types of DDIs: pharmacokinetic (PK), pharmacodynamic, and pharmaceutical. PK is the most frequent type of DDI, which often appears as a result of the inhibition or induction of drug-metabolising enzymes (DME). In this review, we summarise in silico methods that may be applied for the prediction of the inhibition or induction of DMEs and describe appropriate computational methods for DDI prediction, showing the current situation and perspectives of these approaches in medicinal and pharmaceutical chemistry. We review sources of information on DDI, which can be used in pharmaceutical investigations and medicinal practice and/or for the creation of computational models. The problem of the inaccuracy and redundancy of these data are discussed. We provide information on the state-of-the-art physiologically- based pharmacokinetic modelling (PBPK) approaches and DME-based in silico methods. In the section on ligand-based methods, we describe pharmacophore models, molecular field analysis, quantitative structure-activity relationships (QSAR), and similarity analysis applied to the prediction of DDI related to the inhibition or induction of DME. In conclusion, we discuss the problems of DDI severity assessment, mention factors that influence severity, and highlight the issues, perspectives and practical using of in silico methods.


Assuntos
Inibidores das Enzimas do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Preparações Farmacêuticas/metabolismo , Indução Enzimática , Humanos , Preparações Farmacêuticas/química , Relação Estrutura-Atividade
18.
Front Pharmacol ; 9: 1136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364128

RESUMO

Estimation of interaction of drug-like compounds with antitargets is important for the assessment of possible toxic effects during drug development. Publicly available online databases provide data on the experimental results of chemical interactions with antitargets, which can be used for the creation of (Q)SAR models. The structures and experimental Ki and IC50 values for compounds tested on the inhibition of 30 antitargets from the ChEMBL 20 database were used. Data sets with Ki and IC50 values including more than 100 compounds were created for each antitarget. The (Q)SAR models were created by GUSAR software using quantitative neighborhoods of atoms (QNA), multilevel neighborhoods of atoms (MNA) descriptors, and self-consistent regression. The accuracy of (Q)SAR models was validated by the fivefold cross-validation procedure. The balanced accuracy was higher for qualitative SAR models (0.80 and 0.81 for Ki and IC50 values, respectively) than for quantitative QSAR models (0.73 and 0.76 for Ki and IC50 values, respectively). In most cases, sensitivity was higher for SAR models than for QSAR models, but specificity was higher for QSAR models. The mean R 2 and RMSE were 0.64 and 0.77 for Ki values and 0.59 and 0.73 for IC50 values, respectively. The number of compounds falling within the applicability domain was higher for SAR models than for the test sets.

19.
Front Chem ; 6: 133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755970

RESUMO

Discovery of new pharmaceutical substances is currently boosted by the possibility of utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes about 283 million molecules, each annotated with a proposed synthetic one-step route from commercially available starting materials. The SAVI database is well-suited for ligand-based methods of virtual screening to select molecules for experimental testing. In this study, we compare the performance of three approaches for the analysis of structure-activity relationships that differ in their criteria for selecting of "active" and "inactive" compounds included in the training sets. PASS (Prediction of Activity Spectra for Substances), which is based on a modified Naïve Bayes algorithm, was applied since it had been shown to be robust and to provide good predictions of many biological activities based on just the structural formula of a compound even if the information in the training set is incomplete. We used different subsets of kinase inhibitors for this case study because many data are currently available on this important class of drug-like molecules. Based on the subsets of kinase inhibitors extracted from the ChEMBL 20 database we performed the PASS training, and then applied the model to ChEMBL 23 compounds not yet present in ChEMBL 20 to identify novel kinase inhibitors. As one may expect, the best prediction accuracy was obtained if only the experimentally confirmed active and inactive compounds for distinct kinases in the training procedure were used. However, for some kinases, reasonable results were obtained even if we used merged training sets, in which we designated as inactives the compounds not tested against the particular kinase. Thus, depending on the availability of data for a particular biological activity, one may choose the first or the second approach for creating ligand-based computational tools to achieve the best possible results in virtual screening.

20.
PLoS One ; 13(1): e0191838, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29370280

RESUMO

In silico methods of phenotypic screening are necessary to reduce the time and cost of the experimental in vivo screening of anticancer agents through dozens of millions of natural and synthetic chemical compounds. We used the previously developed PASS (Prediction of Activity Spectra for Substances) algorithm to create and validate the classification SAR models for predicting the cytotoxicity of chemicals against different types of human cell lines using ChEMBL experimental data. A training set from 59,882 structures of compounds was created based on the experimental data (IG50, IC50, and % inhibition values) from ChEMBL. The average accuracy of prediction (AUC) calculated by leave-one-out and a 20-fold cross-validation procedure during the training was 0.930 and 0.927 for 278 cancer cell lines, respectively, and 0.948 and 0.947 for cytotoxicity prediction for 27 normal cell lines, respectively. Using the given SAR models, we developed a freely available web-service for cell-line cytotoxicity profile prediction (CLC-Pred: Cell-Line Cytotoxicity Predictor) based on the following structural formula: http://way2drug.com/Cell-line/.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Internet , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais/estatística & dados numéricos , Feminino , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA