Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Adv Mater ; : e2406149, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279608

RESUMO

Metamaterials are emerging as an unconventional platform to perform computing abstractions in physical systems by processing environmental stimuli into information. While computation functions have been demonstrated in mechanical systems, they rely on compliant mechanisms to achieve predefined states, which impose inherent design restrictions that limit their miniaturization, deployment, reconfigurability, and functionality. Here, a metamaterial system is described based on responsive magnetoactive Janus particle (MAJP) swarms with multiple programmable functions. MAJPs are designed with tunable structure and properties in mind, that is, encoded swarming behavior and fully reversible switching mechanisms, to enable programmable dynamic display, non-volatile and semi-volatile memory, Boolean logic, and information encryption functions in soft, wearable devices. MAJPs and their unique swarming behavior open new functions for the design of multifunctional and reconfigurable display devices, and constitute a promising building block to develop the next generation of soft physical computing devices, with growing applications in security, defense, anti-counterfeiting, camouflage, soft robotics, and human-robot interaction.

2.
Macromol Rapid Commun ; : e2400349, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171381

RESUMO

Protein nanoparticles are an attractive class of materials for nanomedicine applications due to the intrinsic biocompatibility, biodegradability, and intrinsic functionality of their constituent proteins. Despite the clinical success of select protein nanoparticles, this class of nanocarriers remains understudied and underdeveloped compared to lipid and polymer nanoparticles due to challenges related to formulation optimization, large design space, and their structural complexity. In this work, a modular strategy for protein nanoparticle preparation based on the concept of photoreactive jetting is introduced. The process relies on continuous ultraviolet irradiation during electrohydrodynamic (EHD) jetting of protein solutions that contain a homobifunctional photocrosslinker. Protein nanoparticles exhibit nanogel-like architectures comprised of proteins that are linked via synthetic moieties. Compared to conventional protein nanoparticles, this method reduces nanoparticle processing times to minutes, rather than hours to days. The inclusion of an emissive structural motif as the molecular scaffold of the photocrosslinker is used to study the supramolecular architecture of the stable nanoparticles via time-resolved fluorescence spectroscopy.

3.
J Dent ; 149: 105292, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111537

RESUMO

OBJECTIVES: In this study, we used atomic force microscopy (AFM) to quantify the size of surface pore apertures of enamel white spot lesions and then demonstrated the penetration of fluorapatite nanocrystals (nFA) into the subsurface of these lesions. METHODS: For the porosity study, enamel lesions were created on three sound human teeth using a demineralizing gel for 8 days. The interface between sound enamel and the artificial lesion was analyzed by AFM. To visualize the penetration of nFA tagged with a calcium-binding fluorophore (Fluo-4) into the subsurface of white spot lesions, we used two-photon microscopy. Sixteen extracted human teeth with either active, natural, or in vitro-created carious lesions in enamel were randomly divided into three groups. The teeth were treated for 2 min with either a suspension of tagged nFA crystals, Fluo-4 alone, or deionized water, and left for 30 min before being washed with distilled water and examined microscopically. RESULTS: A greater concentration of surface pores with larger areas was observed on the in vitro demineralized enamel (29 % of pores greater than 1.0 µm2) when compared with the adjacent sound enamel (8 % of pores greater than 1.0 µm2) (p=0.012, Fisher exact test). In vitro and natural lesions treated with tagged nFA showed fluorescence at depths ranging from 50 to 170 µm, demonstrating penetration of the nFA into the lesion subsurface. The lesions treated with Fluo-4 alone with no crystals showed mostly surface fluorescence (restricted to the outer 25 µm), while those treated with deionized water showed minimal (restricted to the outer 20 µm) to no fluorescence. CONCLUSION: We have demonstrated the use of AFM to quantify the surface pore apertures and two-photon microscopy to visualize nFA crystals in the subsurface of non-cavitated enamel lesions. CLINICAL SIGNIFICANCE: The restoration of the subsurface of non-cavitated caries lesions is a clinical challenge. This study demonstrated that a 2 min application of nFA could penetrate through the surface apertures of non-cavitated enamel lesions into their subsurface.


Assuntos
Apatitas , Cárie Dentária , Esmalte Dentário , Microscopia de Força Atômica , Nanopartículas , Humanos , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/metabolismo , Nanopartículas/química , Apatitas/química , Porosidade , Cárie Dentária/patologia , Propriedades de Superfície , Estudo de Prova de Conceito , Desmineralização do Dente
4.
ACS Appl Mater Interfaces ; 16(33): 43350-43363, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106360

RESUMO

We present a modular strategy to synthesize nanoparticle sensors equipped with dithiomaleimide-based, fluorescent molecular reporters capable of discerning minute changes in interparticle chemical environments based on fluorescence lifetime analysis. Three types of nanoparticles were synthesized with the aid of tailor-made molecular reporters, and it was found that protein nanoparticles exhibited greater sensitivity to changes in the core environment than polymer nanogels and block copolymer micelles. Encapsulation of the hydrophobic small-molecule drug paclitaxel (PTX) in self-reporting protein nanoparticles induced characteristic changes in fluorescence lifetime profiles, detected via time-resolved fluorescence spectroscopy. Depending on the mode of drug encapsulation, self-reporting protein nanoparticles revealed pronounced differences in their fluorescence lifetime signatures, which correlated with burst- vs diffusion-controlled release profiles observed in previous reports. Self-reporting nanoparticles, such as the ones developed here, will be critical for unraveling nanoparticle stability and nanoparticle-drug interactions, informing the future development of rationally engineered nanoparticle-based drug carriers.


Assuntos
Nanopartículas , Paclitaxel , Nanopartículas/química , Paclitaxel/química , Paclitaxel/farmacologia , Portadores de Fármacos/química , Espectrometria de Fluorescência , Micelas , Proteínas/química
5.
Sci Rep ; 14(1): 15556, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969656

RESUMO

Previously, we reported successful cellular expansion of a murine colorectal carcinoma cell line (CT-26) using a three-dimensional (3D) engineered extracellular matrix (EECM) fibrillar scaffold structure. CCL-247 were grown over a limited time period of 8 days on 3D EECM or tissue culture polystyrene (TCPS). Cells were then assayed for growth, electroporation efficiency and Vigil manufacturing release criteria. Using EECM scaffolds, we report an expansion of CCL-247 (HCT116), a colorectal carcinoma cell line, from a starting concentration of 2.45 × 105 cells to 1.9 × 106 cells per scaffold. Following expansion, 3D EECM-derived cells were assessed based on clinical release criteria of the Vigil manufacturing process utilized for Phase IIb trial operation with the FDA. 3D EECM-derived cells passed all Vigil manufacturing release criteria including cytokine expression. Here, we demonstrate successful Vigil product manufacture achieving the specifications necessary for the clinical trial product release of Vigil treatment. Our results confirm that 3D EECM can be utilized for the expansion of human cancer cell CCL-247, justifying further clinical development involving human tissue sample manufacturing including core needle biopsy and minimal ascites samples.


Assuntos
Matriz Extracelular , Imunoterapia , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Imunoterapia/métodos , Engenharia Tecidual/métodos , Células HCT116 , Neoplasias Colorretais/patologia , Animais , Camundongos , Proliferação de Células , Linhagem Celular Tumoral , Técnicas de Cultura de Células em Três Dimensões/métodos
7.
Nature ; 630(8018): 860-865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811736

RESUMO

Composites from 2D nanomaterials show uniquely high electrical, thermal and mechanical properties1,2. Pairing their robustness with polarization rotation is needed for hyperspectral optics in extreme conditions3,4. However, the rigid nanoplatelets have randomized achiral shapes, which scramble the circular polarization of photons with comparable wavelengths. Here we show that multilayer nanocomposites from 2D nanomaterials with complex textured surfaces strongly and controllably rotate light polarization, despite being nano-achiral and partially disordered. The intense circular dichroism (CD) in nanocomposite films originates from the diagonal patterns of wrinkles, grooves or ridges, leading to an angular offset between axes of linear birefringence (LB) and linear dichroism (LD). Stratification of the layer-by-layer (LBL) assembled nanocomposites affords precise engineering of the polarization-active materials from imprecise nanoplatelets with an optical asymmetry g-factor of 1.0, exceeding those of typical nanomaterials by about 500 times. High thermal resilience of the composite optics enables operating temperature as high as 250 °C and imaging of hot emitters in the near-infrared (NIR) part of the spectrum. Combining LBL engineered nanocomposites with achiral dyes results in anisotropic factors for circularly polarized emission approaching the theoretical limit. The generality of the observed phenomena is demonstrated by nanocomposite polarizers from molybdenum sulfide (MoS2), MXene and graphene oxide (GO) and by two manufacturing methods. A large family of LBL optical nanocomponents can be computationally designed and additively engineered for ruggedized optics.

8.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559270

RESUMO

Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary: The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract: Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.

9.
Carcinogenesis ; 45(6): 436-449, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470060

RESUMO

Oral squamous cell carcinoma (OSCC) is worldwide health problem associated with high morbidity and mortality. From both the patient and socioeconomic perspectives, prevention of progression of premalignant oral intraepithelial neoplasia (OIN) to OSCC is clearly the preferable outcome. Optimal OSCC chemopreventives possess a variety of attributes including high tolerability, bioavailability, efficacy and preservation of an intact surface epithelium. Terminal differentiation, which directs oral keratinocytes leave the proliferative pool to form protective cornified envelopes, preserves the protective epithelial barrier while concurrently eliminating growth-aberrant keratinocytes. This study employed human premalignant oral keratinocytes and an OSCC cell line to evaluate the differentiation-inducing capacity of the synthetic retinoid, fenretinide (4HPR). Full-thickness oral mucosal explants were evaluated for proof of concept differentiation studies. Results of this study characterize the ability of 4HPR to fulfill all requisite components for keratinocyte differentiation, i.e. nuclear import via binding to cellular RA binding protein-II (molecular modeling), binding to and subsequent activation of retinoic acid nuclear receptors (receptor activation assays), increased expression and translation of genes associated with keratinocyte differentiation [Reverse transcription polymerase chain reaction (RT-PCR), immunoblotting] upregulation of a transglutaminase enzyme essential for cornified envelope formation (transglutaminase 3, functional assay) and augmentation of terminal differentiation in human oral epithelial explants (image-analyses quantified corneocyte desquamation). These data build upon the chemoprevention repertoire of 4HPR that includes function as a small molecule kinase inhibitor and inhibition of essential mechanisms necessary for basement membrane invasion. An upcoming clinical trial, which will assess whether a 4HPR-releasing mucoadhesive patch induces histologic, clinical and molecular regression in OIN lesions, will provide essential clinical insights.


Assuntos
Carcinoma de Células Escamosas , Diferenciação Celular , Fenretinida , Queratinócitos , Neoplasias Bucais , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Diferenciação Celular/efeitos dos fármacos , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/prevenção & controle , Fenretinida/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/prevenção & controle , Carcinoma de Células Escamosas/metabolismo , Quimioprevenção/métodos , Receptores do Ácido Retinoico/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Mucosa Bucal/patologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo
10.
Ann Clin Transl Neurol ; 10(7): 1239-1253, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37283238

RESUMO

OBJECTIVE: Brain organoids are miniaturized in vitro brain models generated from pluripotent stem cells, which resemble full-sized brain more closely than conventional two-dimensional cell cultures. Although brain organoids mimic the human brain's cell-to-cell network interactions, they generally fail to faithfully recapitulate cell-to-matrix interactions. Here, an engineered framework, called an engineered extracellular matrix (EECM), was developed to provide support and cell-to-matrix interactions to developing brain organoids. METHODS: We generated brain organoids using EECMs comprised of human fibrillar fibronectin supported by a highly porous polymer scaffold. The resultant brain organoids were characterized by immunofluorescence microscopy, transcriptomics, and proteomics of the cerebrospinal fluid (CSF) compartment. RESULTS: The interstitial matrix-mimicking EECM enhanced neurogenesis, glial maturation, and neuronal diversity from human embryonic stem cells versus conventional protein matrix (Matrigel). Additionally, EECMs supported long-term culture, which promoted large-volume organoids containing over 250 µL of CSF. Proteomics analysis of the CSF found it superseded previous brain organoids in protein diversity, as indicated by 280 proteins spanning 500 gene ontology pathways shared with adult CSF. INTERPRETATION: Engineered EECM matrices represent a major advancement in neural engineering as they have the potential to significantly enhance the structural, cellular, and functional diversity that can be achieved in advanced brain models.


Assuntos
Organoides , Células-Tronco Pluripotentes , Adulto , Humanos , Organoides/metabolismo , Matriz Extracelular , Encéfalo , Neurogênese
11.
ACS Appl Mater Interfaces ; 15(17): 21618-21628, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37079371

RESUMO

As the current top-down microchip manufacturing processes approach their resolution limits, there is a need for alternative patterning technologies that offer high feature densities and edge fidelity with single-digit nanometer resolution. To address this challenge, bottom-up processes have been considered, but they typically require sophisticated masking and alignment schemes and/or face materials' compatibility issues. In this work, we report a systematic study into the impact of thermodynamic processes on the area selectivity of chemical vapor deposition (CVD) polymerization of functional [2.2]paracyclophanes (PCP). Adhesion mapping of preclosure CVD films by atomic force microscopy (AFM) provided a detailed understanding of the geometric features of the polymer islands that form under different deposition conditions. Our results suggest a correlation between interfacial transport processes, including adsorption, diffusion, and desorption, and thermodynamic control parameters, such as substrate temperature and working pressure. This work culminates in a kinetic model that predictes both area-selective and nonselective CVD parameters for the same polymer/substrate ensemble (PPX-C + Cu). While limited to a focused subset of CVD polymers and substrates, this work provides an improved mechanistic understanding of area-selective CVD polymerization and highlights the potential for thermodynamic control in tuning area selectivity.

12.
Beilstein J Nanotechnol ; 14: 351-361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959977

RESUMO

The potential of therapeutically loaded nanoparticles (NPs) has been successfully demonstrated during the last decade, with NP-mediated nonviral gene delivery gathering significant attention as highlighted by the broad clinical acceptance of mRNA-based COVID-19 vaccines. A significant barrier to progress in this emerging area is the wild variability of approaches reported in published literature regarding nanoparticle characterizations. Here, we provide a brief overview of the current status and outline important concerns regarding the need for standardized protocols to evaluate NP uptake, NP transfection efficacy, drug dose determination, and variability of nonviral gene delivery systems. Based on these concerns, we propose wide adherence to multimodal, multiparameter, and multistudy analysis of NP systems. Adoption of these proposed approaches will ensure improved transparency, provide a better basis for interlaboratory comparisons, and will simplify judging the significance of new findings in a broader context, all critical requirements for advancing the field of nonviral gene delivery.

13.
Pharm Res ; 40(3): 749-764, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36635487

RESUMO

INTRODUCTION: Oral squamous cell carcinoma (OSCC), is associated with high morbidity and mortality. Preemptive interventions have been postulated to provide superior therapeutic options, but their implementation has been restricted by the availability of broadly applicable local delivery systems. METHODS: We address this challenge by engineering a delivery vehicle, Janus nanoparticles (JNP), that combine the dual mucoadhesive properties of a first cationic chitosan compartment with a second hydrophobic poly(lactide-co-glycolide) release compartment. JNP are designed to avoid rapid mucus clearance while ensuring stable loading and controlled release of the IL-6 receptor antagonist, tocilizumab (TCZ). RESULTS: The JNP featured defined and monodispersed sizes with an average diameter of 327 nm and a PDI of 0.245, high circularities above 0.90 and supported controlled release of TCZ and effective internalization by oral keratinocytes. TCZ released from JNP retained its biological activity and effectively reduced both, soluble and membrane-bound IL-6Rα (71% and 50%). In full-thickness oral mucosal explants, 76% of the JNP breached the stratum corneum and in 41% were observed in the basal cell layer indicating excellent mucopenetrating properties. When tested in an aggressive OSCC xenograft model, TCZ-loaded JNP showed high levels of xenograft inhibition and outperformed all control groups with respect to inhibition of tumor cell proliferation, reduction in tumor size and reduced expression of the proto-oncogene ERG. CONCLUSION: By combining critically required, yet orthogonal properties within the same nanoparticle design, the JNP in this study, demonstrate promise as precision delivery platforms for intraoral field-coverage chemoprevention, a vastly under-researched area of high clinical importance.


Assuntos
Carcinoma de Células Escamosas , Quimioprevenção , Neoplasias Bucais , Nanopartículas Multifuncionais , Humanos , Preparações de Ação Retardada , Portadores de Fármacos/química , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/prevenção & controle , Nanopartículas/química , Anticarcinógenos
14.
Adv Mater Interfaces ; 9(22)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36387968

RESUMO

For individuals who have experienced tooth loss, dental implants are an important treatment option for oral reconstruction. For these patients, alveolar bone augmentation and acceleration of osseointegration optimize implant stability. Traditional oral surgery often requires invasive procedures, which can result in prolonged treatment time and associated morbidity. It has been previously shown that chemical vapor deposition (CVD) polymerization of functionalized [2.2]paracyclophanes can be used to anchor gene encoding vectors onto biomaterial surfaces and local delivery of a bone morphogenetic protein (BMP)-encoding vector can increase alveolar bone volume and density in vivo. This study is the first to combine the use of CVD technology and BMP gene delivery on titanium for the promotion of bone regeneration and bone to implant contact in vivo. BMP-7 tethered to titanium surface enhances osteoblast cell differentiation and alkaline phosphatase activity in vitro and increases alveolar bone regeneration and % bone to implant contact similar to using high doses of exogenously applied BMP-7 in vivo. The use of this innovative gene delivery strategy on implant surfaces offers an alternative treatment option for targeted alveolar bone reconstruction.

15.
Caries Res ; 56(4): 419-428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36162361

RESUMO

Previous work has shown targeted fluorescent starch nanoparticles (TFSNs) can label the subsurface of carious lesions and assist dental professionals in the diagnostic process. In this study, we aimed to evaluate the potential of using artificial intelligence (AI) to detect and score carious lesions using ICDAS in combination with fluorescent imaging following application of TFSNs on teeth with a range of lesion severities, using ICDAS-labeled images as the reference standard. A total of 130 extracted human teeth with ICDAS scores from 0 to 6 were selected by a calibrated cariologist. Then, the same surface was imaged with a stereomicroscope under white light illumination, without visible fluorescence, and blue light illumination with an orange filter following application of the TFSNs. Both sets of images were labeled by another blinded ICDAS-calibrated cariologist to demarcate lesion position and severity. Convolutional neural networks, state-of-the-art models in imaging AI, were trained to determine the presence, location, ICDAS score (severity), and lesion surface porosity (as an indicator of activity) of carious lesions, and tested by 30 k-fold validation for white light, blue light, and the combined image sets. The best models showed high performance for the detection of carious lesions (sensitivity 80.26%, PPV 76.36%), potential for determining the severity via ICDAS scoring (accuracy 72%, SD 5.67%), and the detection of surface porosity as an indicator of the activity of the lesions (accuracy 90%, SD 7.00%). More broadly, the combination of targeted biopolymer nanoparticles with imaging AI is a promising combination of novel technologies that could be applied to many other applications.


Assuntos
Cárie Dentária , Nanopartículas , Humanos , Suscetibilidade à Cárie Dentária , Inteligência Artificial , Cárie Dentária/diagnóstico por imagem , Cárie Dentária/patologia , Redes Neurais de Computação
16.
J Dent ; 125: 104243, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35907441

RESUMO

OBJECTIVES: We have previously shown fluorescent cationic starch nanoparticles (FCSNs) penetrate enamel surface porosity of active carious lesions, potentially aiding their detection. Here, we evaluate the in vitro diagnostic accuracy of FCSNs in detecting occlusal caries compared to histologic reference standard. METHODS: 100 extracted human teeth were selected with sound (50), or either non-cavitated (25) or cavitated (25) lesions. A region of interest (ROI) on the occlusal surface was assessed for fluorescence by two independent examiners, after immersion in FCSN solution, water rinse, and illumination by dental curing lamp viewed through orange UV-filter glasses. ROIs were sectioned and evaluated by histology (Downer Criteria) as a gold standard for caries presence. Cohen's Kappa was determined for inter- and intra-examiner agreement, and sensitivity, specificity, and area under the curve of Receiver Operator Curves (ROCAUC) were calculated. The analysis was repeated for the subset of "early" lesions, defined as being limited to enamel. RESULTS: FCSN use resulted in substantial inter-user (k=0.74±0.07), and high intra-user agreement (k=0.80±0.06; 0.94±0.03, by examiner). Sensitivity, specificity and ROCAUC for FCSNs were 88.9%; 94.6%; 0.92±0.06 for all, and 76.9%, 94.6%, and 0.86±0.10 for early lesions. In post hoc analysis, sensitivity seemed to be greater with the FCSN than the expert visual exam, particularly for early lesions. CONCLUSIONS/CLINICAL SIGNIFICANCE: FCSNs are a reproducible and accurate novel technology for occlusal caries detection, with high sensitivity and specificity compared to histology. Future clinical validation is necessary. FCSNs can improve early caries detection and shift treatment towards non-invasive approaches, improving oral health.


Assuntos
Cárie Dentária , Nanopartículas , Cárie Dentária/diagnóstico , Suscetibilidade à Cárie Dentária , Fluorescência , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Amido , Água
17.
RSC Chem Biol ; 3(6): 748-764, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35755193

RESUMO

Acidic pH is critical to the function of the gastrointestinal system, bone-resorbing osteoclasts, and the endolysosomal compartment of nearly every cell in the body. Non-invasive, real-time fluorescence imaging of acidic microenvironments represents a powerful tool for understanding normal cellular biology, defining mechanisms of disease, and monitoring for therapeutic response. While commercially available pH-sensitive fluorescent probes exist, several limitations hinder their widespread use and potential for biologic application. To address this need, we developed a novel library of pH-sensitive probes based on the highly photostable and water-soluble fluorescent molecule, Rhodamine 6G. We demonstrate versatility in terms of both pH sensitivity (i.e., pK a) and chemical functionality, allowing conjugation to small molecules, proteins, nanoparticles, and regenerative biomaterial scaffold matrices. Furthermore, we show preserved pH-sensitive fluorescence following a variety of forms of covalent functionalization and demonstrate three potential applications, both in vitro and in vivo, for intracellular and extracellular pH sensing. Finally, we develop a computation approach for predicting the pH sensitivity of R6G derivatives, which could be used to expand our library and generate probes with novel properties.

18.
ACS Nano ; 16(6): 8729-8750, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35616289

RESUMO

Glioblastoma (GBM) is an aggressive primary brain cancer, with a 5 year survival of ∼5%. Challenges that hamper GBM therapeutic efficacy include (i) tumor heterogeneity, (ii) treatment resistance, (iii) immunosuppressive tumor microenvironment (TME), and (iv) the blood-brain barrier (BBB). The C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling pathway is activated in GBM and is associated with tumor progression. Although the CXCR4 antagonist (AMD3100) has been proposed as an attractive anti-GBM therapeutic target, it has poor pharmacokinetic properties, and unfavorable bioavailability has hampered its clinical implementation. Thus, we developed synthetic protein nanoparticles (SPNPs) coated with the transcytotic peptide iRGD (AMD3100-SPNPs) to target the CXCL2/CXCR4 pathway in GBM via systemic delivery. We showed that AMD3100-SPNPs block CXCL12/CXCR4 signaling in three mouse and human GBM cell cultures in vitro and in a GBM mouse model in vivo. This results in (i) inhibition of GBM proliferation, (ii) reduced infiltration of CXCR4+ monocytic myeloid-derived suppressor cells (M-MDSCs) into the TME, (iii) restoration of BBB integrity, and (iv) induction of immunogenic cell death (ICD), sensitizing the tumor to radiotherapy and leading to anti-GBM immunity. Additionally, we showed that combining AMD3100-SPNPs with radiation led to long-term survival, with ∼60% of GBM tumor-bearing mice remaining tumor free after rechallenging with a second GBM in the contralateral hemisphere. This was due to a sustained anti-GBM immunological memory response that prevented tumor recurrence without additional treatment. In view of the potent ICD induction and reprogrammed tumor microenvironment, this SPNP-mediated strategy has a significant clinical translation applicability.


Assuntos
Glioblastoma , Glioma , Imunoterapia , Nanopartículas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CXCL12/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Receptores CXCR4/antagonistas & inibidores , Transdução de Sinais , Microambiente Tumoral
19.
ACS Appl Mater Interfaces ; 14(18): 20708-20719, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35487502

RESUMO

With the ever-increasing use of 3D cell models toward studying bio-nano interactions and offering alternatives to traditional 2D in vitro and in vivo experiments, methods to image biological tissue in real time and with high spatial resolution have become a must. A suitable technique therefore is surface-enhanced Raman scattering (SERS)-based microscopy, which additionally features reduced photocytotoxicity and improved light penetration. However, optimization of imaging and postprocessing parameters is still required. Herein we present a method to monitor cell proliferation over time in 3D, using multifunctional 3D-printed scaffolds composed of biologically inert poly(lactic-co-glycolic acid) (PLGA) as the base material, in which fluorescent labels and SERS-active gold nanoparticles (AuNPs) can be embedded. The combination of imaging techniques allows optimization of SERS imaging parameters for cell monitoring. The scaffolds provide anchoring points for cell adhesion, so that cell growth can be observed in a suspended 3D matrix, with multiple reference points for confocal fluorescence and SERS imaging. By prelabeling cells with SERS-encoded AuNPs and fluorophores, cell proliferation and migration can be simultaneously monitored through confocal Raman and fluorescence microscopy. These scaffolds provide a simple method to follow cell dynamics in 4D, with minimal disturbance to the tissue model.


Assuntos
Ouro , Nanopartículas Metálicas , Corantes Fluorescentes , Glicóis , Análise Espectral Raman/métodos
20.
Langmuir ; 38(18): 5603-5616, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35446569

RESUMO

Nanoparticle-based delivery of therapeutics to the brain has had limited clinical impact due to challenges crossing the blood-brain barrier (BBB). Certain cells, such as monocytes, possess the ability to migrate across the BBB, making them attractive candidates for cell-based brain delivery strategies. In this work, we explore nanoparticle design parameters that impact both monocyte association and monocyte-mediated BBB transport. We use electrohydrodynamic jetting to prepare nanoparticles of varying sizes, compositions, and elasticity to address their impact on uptake by THP-1 monocytes and permeation across the BBB. An in vitro human BBB model is developed using human cerebral microvascular endothelial cells (hCMEC/D3) for the assessment of migration. We compare monocyte uptake of both polymeric and synthetic protein nanoparticles (SPNPs) of various sizes, as well as their effect on cell migration. SPNPs (human serum albumin/HSA or human transferrin/TF) are shown to promote increased monocyte-mediated transport across the BBB over polymeric nanoparticles. TF SPNPs (200 nm) associate readily, with an average uptake of 138 particles/cell. Nanoparticle loading is shown to influence the migration of THP-1 monocytes. The migration of monocytes loaded with 200 nm TF and 200 nm HSA SPNPs was 2.3-fold and 2.1-fold higher than that of an untreated control. RNA-seq analysis after TF SPNP treatment suggests that the upregulation of several migration genes may be implicated in increased monocyte migration (ex. integrin subunits α M and α L). Integrin ß 2 chain combines with either integrin subunit α M chain or integrin subunit α L chain to form macrophage antigen 1 and lymphocyte function-associated antigen 1 integrins. Both products play a pivotal role in the transendothelial migration cascade. Our findings highlight the potential of SPNPs as drug and/or gene delivery platforms for monocyte-mediated BBB transport, especially where conventional polymer nanoparticles are ineffective or otherwise not desirable.


Assuntos
Monócitos , Nanopartículas , Células Endoteliais/metabolismo , Humanos , Integrinas/metabolismo , Migração Transendotelial e Transepitelial , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA