Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37765566

RESUMO

Molecularly imprinted polymers (MIPs) are synthetic receptors that mimic the specificity of biological antibody-antigen interactions. By using a "lock and key" process, MIPs selectively bind to target molecules that were used as templates during polymerization. While MIPs are typically prepared using conventional monomers, such as methacrylic acid and acrylamide, contemporary advancements have pivoted towards the functional potential of dopamine as a novel monomer. The overreaching goal of the proposed review is to fully unlock the potential of molecularly imprinted polydopamine (MIPda) within the realm of cutting-edge sensing applications. This review embarks by shedding light on the intricate tapestry of materials harnessed in the meticulous crafting of MIPda, endowing them with tailored properties. Moreover, we will cover the diverse sensing applications of MIPda, including its use in the detection of ions, small molecules, epitopes, proteins, viruses, and bacteria. In addition, the main synthesis methods of MIPda, including self-polymerization and electropolymerization, will be thoroughly examined. Finally, we will examine the challenges and drawbacks associated with this research field, as well as the prospects for future developments. In its entirety, this review stands as a resolute guiding compass, illuminating the path for researchers and connoisseurs alike.

2.
Micromachines (Basel) ; 14(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37421117

RESUMO

The authors present in this study the development of a novel method for creating stretchable electronics from dual-layer flex printed circuit boards (flex-PCBs) as a platform for soft robotic sensor arrays (SRSAs) for cardiac voltage mapping applications. There is a crucial need for devices that utilize multiple sensors and provide high performance signal acquisition for cardiac mapping. Previously, our group demonstrated how single-layer flex-PCB can be postprocessed to create a stretchable electronic sensing array. In this work, a detailed fabrication process for creating a dual-layer multielectrode flex-PCB SRSA is presented, along with relevant parameters to achieve optimal postprocessing with a laser cutter. The dual-layer flex-PCB SRSA's ability to acquire electrical signals is demonstrated both in vitro as well as in vivo on a Leporine cardiac surface. These SRSAs could be extended into full-chamber cardiac mapping catheter applications. Our results show a significant contribution towards the scalable use of dual-layer flex-PCB for stretchable electronics.

3.
Front Cell Dev Biol ; 11: 1149912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181754

RESUMO

Exosomes are tiny vesicles released by cells that carry communications to local and distant locations. Emerging research has revealed the role played by integrins found on the surface of exosomes in delivering information once they reach their destination. But until now, little has been known on the initial upstream steps of the migration process. Using biochemical and imaging approaches, we show here that exosomes isolated from both leukemic and healthy hematopoietic stem/progenitor cells can navigate their way from the cell of origin due to the presence of sialyl Lewis X modifications surface glycoproteins. This, in turn, allows binding to E-selectin at distant sites so the exosomes can deliver their messages. We show that when leukemic exosomes were injected into NSG mice, they traveled to the spleen and spine, sites typical of leukemic cell engraftment. This process, however, was inhibited in mice pre-treated with blocking E-selectin antibodies. Significantly, our proteomic analysis found that among the proteins contained within exosomes are signaling proteins, suggesting that exosomes are trying to deliver active cues to recipient cells that potentially alter their physiology. Intriguingly, the work outlined here also suggests that protein cargo can dynamically change upon exosome binding to receptors such as E-selectin, which thereby could alter the impact it has to regulate the physiology of the recipient cells. Furthermore, as an example of how miRNAs contained in exosomes can influence RNA expression in recipient cells, our analysis showed that miRNAs found in KG1a-derived exosomes target tumor suppressing proteins such as PTEN.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36315467

RESUMO

The use of porous materials as the core for synthesizing molecularly imprinted polymers (MIPs) adds significant value to the resulting sensing system. This review covers in detail the current progress and achievements regarding the synergistic combination of MIPs and porous materials, namely metal/covalent-organic frameworks (MOFs/COFs), including the application of such frameworks in the development of upgraded sensor platforms. The different processes involved in the synthesis of MOF/COF-MIPs are outlined, along with their intrinsic properties. Special attention is paid to debriefing the impact of the morphological changes that occur through the synergistic combination compared to those that occur due to the individual entities. Thereafter, the strategies used for building the sensors, as well as the transduction modes, are overviewed and discussed. This is followed by a full description of research advances for various types of MOF/COF-MIP-based (bio)sensors and their applications in the fields of environmental monitoring, food safety, and pharmaceutical analysis. Finally, the challenges/drawbacks, as well as the prospects of this research field, are discussed in detail.

5.
Biosens Bioelectron ; 180: 113116, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662847

RESUMO

Improvements in the laser-scribed graphene (LSG)-based electrodes are critical to overcoming limitations of bare LSG electrodes in terms of sensitivity, direct immobilization of detection probes for biosensor fabrication, and ease of integration with point-of-care (POC) devices. Herein, we introduce a new class of nanostructured gold modified LSG (LSG-AuNS) electrochemical sensing system comprising LSG-AuNS working electrode, LSG reference, and LSG counter electrode. LSG-AuNS electrodes are realized by electrodeposition of gold chloride (HAuCl4) solution, which gave~2-fold enhancement in sensitivity and electrocatalytic activity compared to bare LSG electrode and commercially available screen-printed gold electrode (SPAuE). We demonstrate LSG-AuNS electrochemical aptasensor for detecting human epidermal growth factor receptor 2 (Her-2) with a limit of detection (LOD) of 0.008 ng/mL and a linear range of 0.1-200 ng/mL. LSG-AuNS-aptasensor can easily detect different concentrations of Her-2 spiked in undiluted human serum. Finally, to show the LSG-AuNS sensor system's potential to develop POC biosensor devices, we integrated LSG-AuNS electrodes with a handheld electrochemical system operated using a custom-developed mobile application.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Biomarcadores , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Lasers , Limite de Detecção , Testes Imediatos
6.
Biosens Bioelectron ; 168: 112509, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32877778

RESUMO

Laser-scribed graphene electrodes (LSGEs) have recently shown a potential for the development of electrochemical biosensors thanks to their electronic properties, porous structures, and large surface area that can support the charge transfer. In this paper, the authors present a comparative study of the electrochemical performances of LSGEs with the conventional screen-printed carbon electrodes (SPCEs) toward the detection of most commonly used phenolic compounds and biomolecules. Cyclic voltammetry measurements showed a significant enhancement in the electron transfer rate of all tested electroactive species at LSGEs compared to conventional SPCE. We have suggested, for the first time, a mechanistic study for catecholamine redox reactions at LSGE as the electron transfer-chemical reaction-electron transfer mechanism. Moreover, the excellent performances of LSGE were observed in terms of the electrocatalytic detection of paracetamol (PCM). Therefore, the second part of this study compared the analytical performances of LSGE and SPCE with respect to the detection of PCM. The LSGE allows a fast and reversible system for PCM with a low ΔEp of 88 mV while the SPCE exhibits a quasi-reversible system with a higher ΔEp of 384 mV. The LSGE demonstrated a PCM linear range of concentration between 0.1 µM and 10 µM, with a detection limit of 31 nM. In addition, the LSGE showed a successful applicability with good selectivity and sensitivity for PCM determination in real samples of pharmaceutical tablets. Hence, LSGEs could be an excellent platform for simple and low-cost electrochemical biosensor applications.


Assuntos
Técnicas Biossensoriais , Grafite , Carbono , Técnicas Eletroquímicas , Eletrodos , Lasers
7.
Biosens Bioelectron ; 168: 112565, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32927277

RESUMO

Laser-derived graphene (LDG) technology is gaining attention as a promising material for the development of novel electrochemical sensors and biosensors. Compared to established methods for graphene synthesis, LDG provides many advantages such as cost-effectiveness, fast electron mobility, mask-free, green synthesis, good electrical conductivity, porosity, mechanical stability, and large surface area. This review discusses, in a critical way, recent advancements in this field. First, we focused on the fabrication and doping of LDG platforms using different strategies. Next, the techniques for the modification of LDG sensors using nanomaterials, conducting polymers, biological and artificial receptors are presented. We then discussed the advances achieved for various LDG sensing and biosensing schemes and their applications in the fields of environmental monitoring, food safety, and clinical diagnosis. Finally, the drawbacks and limitations of LDG based electrochemical biosensors are addressed, and future trends are also highlighted.


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Técnicas Eletroquímicas , Lasers
8.
J Mater Chem B ; 8(1): 18-26, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31782481

RESUMO

Acute myocardial infarction (AMI) is a serious health problem that must be identified in its early stages. Considerable progress has been made in understanding the condition of AMI through ascertaining the role of biomarkers, such as myoglobin, cardiac troponin proteins (T and I), creatine kinase-MB, and fatty acid-binding protein (FABP). A field-effect transistor (FET) is an effective platform; however, innovations are required in all layers of the FET for it to become robust and highly sensitive. For the first time, we made use of the synergistic combination of noble metal nanoparticles (AuNPs) with Co3O4 for the detection of cardiac troponin T (cTnT) in a FET platform. We determined the morphology of Au-decorated Co3O4 NRs and their electronic properties by characterizing the channel layer using electron microscopies and transient measurements. Subsequently, we performed the detection of cardiac troponin T by immobilizing its complementary biotinylated DNA aptamer on the channel surface using a drop-casting method. To understand the changes in drain current caused by this interaction, we probed our SWCNT-Co3O4 NR transistor with limited gate and drain bias (≤1 V), achieving a sensitivity of 0.5 µA µg-1 mL-1 for the Au-decorated NRs. A 250% increase in the sensitivity and a limit of detection (LOD) of 0.1 µg mL-1 were achieved by using this device. Finally, selectivity studies proved that this synergistic combination works well in the FET configuration for the successful detection of cTnT.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Troponina T/sangue , Biomarcadores/sangue , Cobalto/química , Ouro/química , Humanos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/metabolismo , Óxidos/química
9.
Ultrason Sonochem ; 58: 104670, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450357

RESUMO

In this work, a comparative study of the effect of various solvents on the synthesis of magnetic molecularly imprinted polymers (MMIPs) based on the use of high-power ultrasound probe is reported for the first time. Dimethylsulfoxide (DMSO), dimethylformamide (DMF), ethanol, acetonitrile and acetone were studied as solvents for the synthesis of MMIPs. Several crucial experimental conditions such as the time of synthesis and the applied amplitude were investigated. DMSO, DMF and ethanol were successfully used for ultrasound-assisted synthesis of MMIPs. However, for the polymerization performed using acetonitrile and acetone, no significant conversion to product was observed. Under optimal conditions for each solvent tested, the synthesized MMIPs were characterized using several techniques such as Scanning/Transmission Electron Microscopy (SEM and STEM modes), X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Thermal Gravimetric Analysis and Vibrating Sample Magnetometer system. The study of adsorption time of MMIPs showed that fast adsorption occurred due to the presence of specific imprinted sites on the surface. Moreover, isotherm study showed that the experimental equilibrium data fitted well with Freundlich model. The results of selectivity study indicated that MMIPs could selectively recognize the target molecule. Due to its high adsorption properties and easiness of preparation, MMIP-DMSO was used successfully as adsorbent material in solid-phase extraction coupled to a colorimetric method for sulfamethoxazole (SMX). After optimizing analytical conditions, a calibration plot was performed in the concentration range from 0.2 to 5 µg·mL-1 with limits of detection and quantitation of 0.06 and 0.2 µg·mL-1, respectively. The developed procedure was applied successfully for SMX determination in spiked tap and mineral waters showing satisfactory recoveries. Besides, reusability study demonstrated that MMIP could be reused at least 8 times keeping good binding capacity.

10.
Ultrason Sonochem ; 53: 226-236, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30686595

RESUMO

In this paper, we report for the first time a novel, simple and fast method for the synthesis of magnetic molecularly imprinted polymers (Mag-MIPs) based on high-energy ultrasound probe. Sulfamethoxazole (SMX) was used as template molecule, methacrylic acid as functional monomer, ethylene glycole dimethacrylate as crosslinking agent and magnetic nanoparticles (NPs) as the supporting core. The effects of time (5, 7.5 and 10 min) and the applied amplitude (20, 30, 40, 50 and 60%) using the ultrasound probe for the synthesis of Mag-MIPs were studied and optimized. By applying the proposed synthesis method, the US-magMIPs synthesis time was satisfactorily reduced from several hours to a few minutes (7.5 min) in a simple way. For comparison purposes, the Mag-MIP and the non imprinted polymer (MagNIP) were also synthesized employing an ultrasound bath assisted approach (2 h, 65 °C). Magnetic NPs and US-magMIPs synthesized by both ways were investigated by means of several characterization techniques such as Fourier Transform Infrared (FT-IR) spectroscopy, Scanning/Transmission electron microscopy (SEM and STEM modes), X-Ray Diffraction (XRD), Vibrating Sample Magnetometer (VSM) and Dynamic Light Scattering (DLS). The results obtained confirms clearly the formation of magnetic NPs and their successful decoration by the imprinted polymer in both synthesis ways. The sulfonamide binding efficiency of US-magMIPs synthesized by the ultrasound probe and ultrasound bath were investigated according to the adsorption isotherm. The obtained results showed that the US-magMIP synthesized with the probe has more binding capacity compared to the one synthesized with US bath. The adsorption time was studied and both synthesized US-magMIPs reached the maximum adsorption capacity toward SMX after 1 h and the US-magMIP probe tends to have more easiness to bind SMX in less time. The selectivity studies of the synthesized US-magMIPs based on probe and bath showed a high affinity for SMX compared to its structural analogues such as sulfadiazine, sulfamerazine and sulfacetamide.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 181: 276-285, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28388524

RESUMO

The authors have developed a sensitive spectrophotometric method for determination of sulfonamide derivatives such as sulfanilamide (SAA), sulfadiazine (SDZ), sulfacetamide (SCT) sulfamethoxazole (SMX), sulfamerazine (SMR), sulfadimethoxine (SDX), sulfamethiazole (SMT) and Sulfathiazole (STZ). This method is based on the Bratton-Marshall reaction, which involves the diazotization of sulfonamides with sodium nitrite under acidic conditions, followed by coupling with N-(1-naphtyl) ethylenediamine dihydrochloride (NED) to form a pink colored compound. Therefore, the Bratton-Marshall method was modified by optimizing the reaction conditions, which allows us to determine a low concentration range of sulfonamides compared to the reported methods. The limits of detection and quantification obtained were 0.019-0.05 and 0.06-0.16µgmL-1, respectively. In comparison with other reported methods using different coupling agents, the proposed method was found to be the most simple and sensitive for sulfonamides determination. In this paper, the modified method was successfully employed for the determination of sulfonamides in drinking water, seawater and pharmaceutical and veterinary formulations. The purpose of this work is to optimize and develop a simple method for extraction and concentration of sulfonamides present as residues in seawater and their quantification with the recommended spectrophotometric method. Solid phase extraction (SPE) of sulfonamides from seawater samples was evaluated using Oasis HLB cartridges (3mL, 540mg). The recovery efficiency was investigated in the sulfonamides concentration range comprised between 0.19 and 126ngmL-1. The ease of use of this extraction method makes it very useful for routine laboratory work.


Assuntos
Água do Mar/química , Extração em Fase Sólida/métodos , Espectrofotometria Ultravioleta/métodos , Sulfonamidas/análise , Poluentes Químicos da Água/análise , Limite de Detecção , Sulfonamidas/química , Sulfonamidas/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA