Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4008, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773062

RESUMO

Ordered mechanical systems typically have one or only a few stable rest configurations, and hence are not considered useful for encoding memory. Multistable and history-dependent responses usually emerge from quenched disorder, for example in amorphous solids or crumpled sheets. In contrast, due to geometric frustration, periodic magnetic systems can create their own disorder and espouse an extensive manifold of quasi-degenerate configurations. Inspired by the topological structure of frustrated artificial spin ices, we introduce an approach to design ordered, periodic mechanical metamaterials that exhibit an extensive set of spatially disordered states. While our design exploits the correspondence between frustration in magnetism and incompatibility in meta-mechanics, our mechanical systems encompass continuous degrees of freedom, and thus generalize their magnetic counterparts. We show how such systems exhibit non-Abelian and history-dependent responses, as their state can depend on the order in which external manipulations were applied. We demonstrate how this richness of the dynamics enables to recognize, from a static measurement of the final state, the sequence of operations that an extended system underwent. Thus, multistability and potential to perform computation emerge from geometric frustration in ordered mechanical lattices that create their own disorder.

2.
Elife ; 122024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451063

RESUMO

Numerous studies have identified traveling waves in the cortex and suggested they play important roles in brain processing. These waves are most often measured using macroscopic methods that are unable to assess the local spiking activity underlying wave dynamics. Here, we investigated the possibility that waves may not be traveling at the single neuron scale. We first show that sequentially activating two discrete brain areas can appear as traveling waves in EEG simulations. We next reproduce these results using an analytical model of two sequentially activated regions. Using this model, we were able to generate wave-like activity with variable directions, velocities, and spatial patterns, and to map the discriminability limits between traveling waves and modular sequential activations. Finally, we investigated the link between field potentials and single neuron excitability using large-scale measurements from turtle cortex ex vivo. We found that while field potentials exhibit wave-like dynamics, the underlying spiking activity was better described by consecutively activated spatially adjacent groups of neurons. Taken together, this study suggests caution when interpreting phase delay measurements as continuously propagating wavefronts in two different spatial scales. A careful distinction between modular and wave excitability profiles across scales will be critical for understanding the nature of cortical computations.


Assuntos
Encéfalo , Tartarugas , Animais , Neurônios , Viagem
3.
Proc Natl Acad Sci U S A ; 121(9): e2310715121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38394241

RESUMO

We experimentally and theoretically study the dynamics of a one-dimensional array of pendula with a mild spatial gradient in their self-frequency and where neighboring pendula are connected with weak and alternating coupling. We map their dynamics to the topological Su-Schrieffer-Heeger model of charged quantum particles on a lattice with alternating hopping rates in an external electric field. By directly tracking the dynamics of a wave-packet in the bulk of the lattice, we observe Bloch oscillations, Landau-Zener transitions, and coupling between the isospin (i.e., the inner wave function distribution within the unit cell) and the spatial degrees of freedom (the distribution between unit cells). We then use Bloch oscillations in the bulk to directly measure the nontrivial global topological phase winding and local geometric phase of the band. We measure an overall evolution of 3.1 [Formula: see text] 0.2 radians for the geometrical phase during the Bloch period, consistent with the expected Zak phase of [Formula: see text]. Our results demonstrate the power of classical analogs of quantum models to directly observe the topological properties of the band structure and shed light on the similarities and the differences between quantum and classical topological effects.

4.
Phys Rev Lett ; 130(25): 258201, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37418710

RESUMO

The statistics of noise emitted by ultrathin crumpled sheets is measured while they exhibit logarithmic relaxations under load. We find that the logarithmic relaxation advanced via a series of discrete, audible, micromechanical events that are log-Poisson distributed (i.e., the process becomes a Poisson process when time stamps are replaced by their logarithms). The analysis places constraints on the possible mechanisms underlying the glasslike slow relaxation and memory retention in these systems.

5.
Phys Rev Lett ; 130(4): 048202, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763418

RESUMO

Disordered and amorphous materials often retain memories of perturbations they have experienced since preparation. Studying such memories is a gateway to understanding this challenging class of systems. However, it often requires the ability to measure local structural changes in response to external drives. Here, we show that dissipation is a generic macroscopic indicator of the memory of the largest perturbation. Through experiments in crumpled sheets under cyclic drive, we show that dissipation transiently increases when first surpassing the largest perturbation due to irreversible structural changes with unique statistics. This finding is used to devise novel memory readout protocols based on global observables only. The general applicability of this approach is demonstrated by revealing a similar memory effect in a three-dimensional amorphous solid.

6.
Proc Natl Acad Sci U S A ; 119(28): e2200028119, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867743

RESUMO

Crumpling an ordinary thin sheet transforms it into a structure with unusual mechanical behaviors, such as enhanced rigidity, emission of crackling noise, slow relaxations, and memory retention. A central challenge in explaining these behaviors lies in understanding the contribution of the complex geometry of the sheet. Here we combine cyclic driving protocols and three-dimensional (3D) imaging to correlate the global mechanical response and the underlying geometric transformations in unfolded crumpled sheets. We find that their response to cyclic strain is intermittent, hysteretic, and encodes a memory of the largest applied compression. Using 3D imaging we show that these behaviors emerge due to an interplay between localized and interacting geometric instabilities in the sheet. A simple model confirms that these minimal ingredients are sufficient to explain the observed behaviors. Finally, we show that after training, multiple memories can be encoded, a phenomenon known as return point memory. Our study lays the foundation for understanding the complex mechanics of crumpled sheets and presents an experimental and theoretical framework for the study of memory formation in systems of interacting instabilities.

7.
ACS Sens ; 5(3): 879-886, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32103665

RESUMO

Tracking and analyzing the individual diffusion of nanoscale objects such as proteins and viruses is an important methodology in life science. Here, we show a sensor that combines the efficiency of light line illumination with the advantages of fluidic confinement. Tracking of freely diffusing nano-objects inside water-filled hollow core fibers with core diameters of tens of micrometers using elastically scattered light from the core mode allows retrieving information about the Brownian motion and the size of each particle of the investigated ensemble individually using standard tracking algorithms and the mean squared displacement analysis. Specifically, we successfully measure the diameter of every gold nanosphere in an ensemble that consists of several hundreds of 40 nm particles, with an individual precision below 17% (±8 nm). In addition, we confirm the relevance of our approach with respect to bioanalytics by analyzing 70 nm λ-phages. Overall these features, together with the strongly reduced demand for memory space, principally allows us to record thousands of frames and to achieve high frame rates for high precision tracking of nanoscale objects.


Assuntos
Ouro , Nanopartículas Metálicas , Movimento (Física) , Nanosferas , Bacteriófago lambda , Difusão
8.
Phys Rev Lett ; 125(25): 256802, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416370

RESUMO

We introduce a method to design topological mechanical metamaterials that are not constrained by Newtonian dynamics. The unit cells in a mechanical lattice are subjected to active feedback forces that are processed through autonomous controllers preprogrammed to generate the desired local response in real time. As an example, we focus on the quantum Haldane model, which is a two-band system with nonreciprocal coupling terms, the implementation of which in mechanical systems requires violating Newton's third law. We demonstrate that the required topological phase characterized by chiral edge modes can be achieved in an analogous mechanical system only with closed-loop control. We then show that our approach enables us to realize, a modified version of the Haldane model in a mechanical metamaterial. Here, the complex-valued couplings are polarized in a way that modes on opposite edges of a lattice propagate in the same direction, and are balanced by counterpropagating bulk modes. The proposed method is general and flexible, and could be used to realize arbitrary lattice parameters, such as nonlocal or nonlinear couplings, time-dependent potentials, non-Hermitian dynamics, and more, on a single platform.

9.
Phys Rev E ; 100(1-1): 012903, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499876

RESUMO

Granular material in a swirled container exhibits a curious transition as the number of particles is increased: At low densities, the particle cluster rotates in the same direction as the swirling motion of the container, while at high densities it rotates in the opposite direction. We investigate this phenomenon experimentally and numerically using a corotating reference frame in which the system reaches a statistical steady state. In this steady state, the particles form a cluster whose translational degrees of freedom are stationary, while the individual particles constantly circulate around the cluster's center of mass, similar to a ball rolling along the wall within a rotating drum. We show that the transition to counterrotation is friction dependent. At high particle densities, frictional effects result in geometric frustration, which prevents particles from cooperatively rolling and spinning. Consequently, the particle cluster rolls like a rigid body with no-slip conditions on the container wall, which necessarily counterrotates around its own axis. Numerical simulations verify that both wall-disk friction and disk-disk friction are critical for inducing counterrotation.

10.
Phys Rev Lett ; 118(8): 085501, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28282188

RESUMO

We observe nonmonotonic aging and memory effects, two hallmarks of glassy dynamics, in two disordered mechanical systems: crumpled thin sheets and elastic foams. Under fixed compression, both systems exhibit monotonic nonexponential relaxation. However, when after a certain waiting time the compression is partially reduced, both systems exhibit a nonmonotonic response: the normal force first increases over many minutes or even hours until reaching a peak value, and only then is relaxation resumed. The peak time scales linearly with the waiting time, indicating that these systems retain long-lasting memory of previous conditions. Our results and the measured scaling relations are in good agreement with a theoretical model recently used to describe observations of monotonic aging in several glassy systems, suggesting that the nonmonotonic behavior may be generic and that athermal systems can show genuine glassy behavior.

11.
J Phys Chem B ; 120(26): 6130-8, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27063451

RESUMO

A complete understanding of the cellular pathways involved in viral infections will ultimately require a diverse arsenal of experimental techniques, including methods for tracking individual viruses and their interactions with the host. Here we demonstrate the use of holographic microscopy to track the position, orientation, and DNA content of unlabeled bacteriophages (phages) in solution near a planar, functionalized glass surface. We simultaneously track over 100 individual λ phages at a rate of 100 Hz across a 33 µm × 33 µm portion of the surface. The technique determines the in-plane motion of the phage to nanometer precision, and the height of the phage above the surface to 100 nm precision. Additionally, we track the DNA content of individual phages as they eject their genome following the addition of detergent-solubilized LamB receptor. The technique determines the fraction of DNA remaining in the phage to within 10% of the total 48.5 kilobase pairs. Analysis of the data reveals that under certain conditions, λ phages move along the surface with their heads down and intermittently stick to the surface by their tails, causing them to stand up. Furthermore, we find that in buffer containing high concentrations of both monovalent and divalent salts, λ phages eject their entire DNA in about 7 s. Taken together, these measurements highlight the potential of holographic microscopy to resolve the fast kinetics of the early stages of phage infection.


Assuntos
Bacteriófago lambda/genética , DNA Viral , Holografia/métodos , Microscopia/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/química , Bacteriófago lambda/fisiologia , Soluções Tampão , DNA Viral/química , Detergentes/química , Difusão , Escherichia coli , Vidro , Processamento de Imagem Assistida por Computador , Movimento (Física) , Sais/química , Soluções
12.
ACS Nano ; 9(12): 12349-57, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26505649

RESUMO

High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber having a subwavelength, nanofluidic channel and illuminate them using the fiber's strongly confined optical mode. The diffusing particles in this cylindrical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions-26 nm in size and 4.6 megadaltons in mass-at rates of over 3 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Nanofibras/química , Nanopartículas/análise , Nanotecnologia/instrumentação , Fibras Ópticas , Vírus/isolamento & purificação , Virologia/instrumentação , Virologia/métodos , Vírus/química
13.
Science ; 347(6227): 1229-33, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25766229

RESUMO

Full control over the dynamics of interacting, indistinguishable quantum particles is an important prerequisite for the experimental study of strongly correlated quantum matter and the implementation of high-fidelity quantum information processing. We demonstrate such control over the quantum walk-the quantum mechanical analog of the classical random walk-in the regime where dynamics are dominated by interparticle interactions. Using interacting bosonic atoms in an optical lattice, we directly observed fundamental effects such as the emergence of correlations in two-particle quantum walks, as well as strongly correlated Bloch oscillations in tilted optical lattices. Our approach can be scaled to larger systems, greatly extending the class of problems accessible via quantum walks.

14.
Opt Express ; 21(20): 24015-24, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24104311

RESUMO

We present a scheme for recovering the complex input field launched into a waveguide array, from partial measurements of its output intensity, given advance knowledge that the input is sparse. In spite of the fact that in general the inversion problem is ill-conditioned, we demonstrate experimentally and in simulations that the prior knowledge of sparsity helps overcome the loss of information. Our method is based on GESPAR, a recently proposed efficient phase retrieval algorithm. Possible applications include optical interconnects and quantum state tomography, and the ideas are extendable to other multiple input and multiple output (MIMO) communication schemes.

15.
Phys Rev Lett ; 110(7): 076403, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166388

RESUMO

Topological insulators and topological superconductors are distinguished by their bulk phase transitions and gapless states at a sharp boundary with the vacuum. Quasicrystals have recently been found to be topologically nontrivial. In quasicrystals, the bulk phase transitions occur in the same manner as standard topological materials, but their boundary phenomena are more subtle. In this Letter we directly observe bulk phase transitions, using photonic quasicrystals, by constructing a smooth boundary between topologically distinct one-dimensional quasicrystals. Moreover, we use the same method to experimentally confirm the topological equivalence between the Harper and Fibonacci quasicrystals.

16.
Phys Rev Lett ; 109(10): 106402, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23005308

RESUMO

The unrelated discoveries of quasicrystals and topological insulators have in turn challenged prevailing paradigms in condensed-matter physics. We find a surprising connection between quasicrystals and topological phases of matter: (i) quasicrystals exhibit nontrivial topological properties and (ii) these properties are attributed to dimensions higher than that of the quasicrystal. Specifically, we show, both theoretically and experimentally, that one-dimensional quasicrystals are assigned two-dimensional Chern numbers and, respectively, exhibit topologically protected boundary states equivalent to the edge states of a two-dimensional quantum Hall system. We harness the topological nature of these states to adiabatically pump light across the quasicrystal. We generalize our results to higher-dimensional systems and other topological indices. Hence, quasicrystals offer a new platform for the study of topological phases while their topology may better explain their surface properties.

17.
Opt Lett ; 37(5): 809-11, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22378401

RESUMO

It is experimentally demonstrated that perfect imaging is possible in disordered wave guiding media, provided that the disorder is off-diagonal, i.e., that only the spacing varies randomly between the otherwise identical lattice sites. On-diagonal disorder or Kerr nonlinearity destroys the imaging.

18.
Science ; 329(5998): 1500-3, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20847264

RESUMO

Quantum walks of correlated particles offer the possibility of studying large-scale quantum interference; simulating biological, chemical, and physical systems; and providing a route to universal quantum computation. We have demonstrated quantum walks of two identical photons in an array of 21 continuously evanescently coupled waveguides in a SiO(x)N(y) chip. We observed quantum correlations, violating a classical limit by 76 standard deviations, and found that the correlations depended critically on the input state of the quantum walk. These results present a powerful approach to achieving quantum walks with correlated particles to encode information in an exponentially larger state space.

19.
Phys Rev Lett ; 105(16): 163905, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21230976

RESUMO

We predict quantum correlations between noninteracting particles evolving simultaneously in a disordered medium. While the particle density follows the single-particle dynamics and exhibits Anderson localization, the two-particle correlation develops unique features that depend on the quantum statistics of the particles and their initial separation. On short time scales, the localization of one particle becomes dependent on whether or not the other particle is localized. On long time scales, the localized particles show oscillatory correlations within the localization length. These effects can be observed in Anderson localization of nonclassical light and ultracold atoms.

20.
Phys Rev Lett ; 105(26): 263604, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21231662

RESUMO

We show that when photons in N-particle path-entangled |N,0)+|0,N) or N00N states undergo Bloch oscillations, they exhibit a periodic transition between spatially bunched and antibunched states. The period of the bunching-antibunching oscillation is N times faster than the period of the oscillation of the photon density, manifesting the unique coherence properties of N00N states. The transition occurs even when the photons are well separated in space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA