Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 5(2): 220-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22052944

RESUMO

Long QT syndrome (LQTS) is caused by functional alterations in cardiac ion channels and is associated with prolonged cardiac repolarization time and increased risk of ventricular arrhythmias. Inherited type 2 LQTS (LQT2) and drug-induced LQTS both result from altered function of the hERG channel. We investigated whether the electrophysiological characteristics of LQT2 can be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology. Spontaneously beating cardiomyocytes were differentiated from two iPSC lines derived from an individual with LQT2 carrying the R176W mutation in the KCNH2 (HERG) gene. The individual had been asymptomatic except for occasional palpitations, but his sister and father had died suddenly at an early age. Electrophysiological properties of LQT2-specific cardiomyocytes were studied using microelectrode array and patch-clamp, and were compared with those of cardiomyocytes derived from control cells. The action potential duration of LQT2-specific cardiomyocytes was significantly longer than that of control cardiomyocytes, and the rapid delayed potassium channel (I(Kr)) density of the LQT2 cardiomyocytes was significantly reduced. Additionally, LQT2-derived cardiac cells were more sensitive than controls to potentially arrhythmogenic drugs, including sotalol, and demonstrated arrhythmogenic electrical activity. Consistent with clinical observations, the LQT2 cardiomyocytes demonstrated a more pronounced inverse correlation between the beating rate and repolarization time compared with control cells. Prolonged action potential is present in LQT2-specific cardiomyocytes derived from a mutation carrier and arrhythmias can be triggered by a commonly used drug. Thus, the iPSC-derived, disease-specific cardiomyocytes could serve as an important platform to study pathophysiological mechanisms and drug sensitivity in LQT2.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/etiologia , Síndrome do QT Longo/fisiopatologia , Modelos Cardiovasculares , Potenciais de Ação , Substituição de Aminoácidos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Primers do DNA/genética , Canal de Potássio ERG1 , Fenômenos Eletrofisiológicos , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Síndrome do QT Longo/classificação , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp
2.
Virology ; 310(1): 190-6, 2003 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-12788643

RESUMO

Nef and Vpr are lentiviral accessory proteins that have been implicated in regulation of cellular gene expression. We noticed that Vpr can potentiate Nef-induced activation of nuclear factor of activated T cells (NFAT)-dependent transcription. Unlike Nef, which stimulated calcium signaling to activate NFAT, Vpr functioned farther downstream. Similar to the positive effects of Vpr on most of the transcriptional test systems that we used, potentiation of NFAT-directed gene expression was relatively modest in magnitude (two- to threefold) and depended on the cell cycle-arresting capacity of Vpr. By contrast, we found that Vpr could cause more than fivefold upregulation of cyclic AMP response element (CRE)-directed transcription via a mechanism that did not require Vpr-induced G2/M arrest. This effect, however, was only evident under suboptimal conditions known to lead to serine phosphorylation of the CRE binding factor (CREB) but not to CREB-dependent gene expression. This suggested that Vpr may act by stabilizing interactions with CREB and its transcriptional cofactor CREB binding protein (CBP). Indeed, this effect could be blocked by cotransfection of the adenoviral CBP inhibitor E1A. These results provide additional evidence for cell cycle-independent regulation of gene expression by Vpr and implicate CREB as a potentially important target for Vpr action in HIV-infected host cells.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Proteínas de Ligação a DNA/fisiologia , Produtos do Gene nef/fisiologia , Produtos do Gene vpr/fisiologia , HIV-1/fisiologia , Ativação Linfocitária , Linfócitos T/imunologia , Fatores de Transcrição/fisiologia , Ativação Transcricional , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV , HIV-1/genética , Humanos , Células Jurkat , Fatores de Transcrição NFATC , Proteínas Nucleares/fisiologia , Acetato de Tetradecanoilforbol/farmacologia , Transativadores/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA