Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 334: 122068, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553197

RESUMO

The fabrication of highly elastic, fatigue-resistant and conductive hydrogels with antibacterial properties is highly desirable in the field of wearable devices. However, it remains challenging to simultaneously realize the above properties within one hydrogel without compromising excellent sensing ability. Herein, we fabricated a highly elastic, fatigue-resistant, conductive, antibacterial and cellulose nanocrystal (CNC) enhanced hydrogel as a sensitive strain sensor by the synergistic effect of biosynthesized selenium nanoparticles (BioSeNPs), MXene and nanocellulose. The structure and potential mechanism to generate biologically synthesized SeNPs (BioSeNPs) were systematically investigated, and the role of protease A (PrA) in enhancing the adsorption between proteins and SeNPs was demonstrated. Additionally, owing to the incorporation of BioSeNPs, CNC and MXene, the synthesized hydrogels showed high elasticity, excellent fatigue resistance and antibacterial properties. More importantly, the sensitivity of hydrogels determined by the gauge factor was as high as 6.24 when a high strain was applied (400-700 %). This study provides a new horizon to synthesize high-performance antibacterial and conductive hydrogels for soft electronics applications.


Assuntos
Nanopartículas , Nitritos , Selênio , Elementos de Transição , Antibacterianos/farmacologia , Celulose/farmacologia , Condutividade Elétrica , Hidrogéis/farmacologia
2.
Carbohydr Polym ; 334: 122006, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553211

RESUMO

Different types of functional oligosaccharides exhibit varying degrees of immune-enhancing effects, which might be attributable to differences in their glycosyl structures. The differences in the immunomodulatory action of three functional oligosaccharides with distinct glycosyl compositions: cello-oligosaccharides (COS), manno-oligosaccharides (MOS), and xylo-oligosaccharides (XOS), were investigated in mouse-derived macrophage RAW264.7. Moreover, the immune enhancement mechanism of oligosaccharides with diverse glycosyl compositions was investigated from a molecular interaction perspective. The TLR4-dependent immunoregulatory effect of functional oligosaccharides was shown by measuring the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 cells treated with different functional oligosaccharides, both with and without Resatorvid [TAK-242] (a Toll-like receptor 4 [TLR4] inhibitor). Western blot analysis showed that binding of the three oligosaccharides to TLR4 activated the downstream signaling pathway and consequently enhanced the immune response. The fluorescence spectra and molecular docking results revealed that the main mechanisms by which these oligosaccharides attach to the TLR4 active pocket are hydrogen bonds and van der Waals forces. Functional oligosaccharides were ranked according to their affinity for TLR4, as follows: MOS > COS > XOS, indicating that oligosaccharides or polysaccharides containing mannose units may confer significant advantages for immune enhancement.


Assuntos
Monossacarídeos , Receptor 4 Toll-Like , Animais , Camundongos , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunidade , Imunomodulação
3.
Int J Biol Macromol ; 264(Pt 1): 130633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447835

RESUMO

Efficiently addressing the challenge of leakage is crucial in the advancement of solid-liquid phase change thermal storage composite materials; however, numerous existing preparation methods often entail complexity and high energy consumption. Herein, a straightforward blending approach was adopted to fabricate stable phase change nanocomposites capitalizing on the interaction between TEMPO-oxidized cellulose nanofibers (TOCNF) and polyethylene glycol (PEG) molecules. By adjusting the ratio of TOCNF to PEG and the molecular weights of PEG, TOCNF/PEG phase change composites (TPCC) with customizable phase transition temperature (40.3-59.1 °C) and high phase transition latent heat (126.3-172.1 J/g) were obtained. The TPCC of high-loaded PEG (80-95 wt%) ensured a leakage rate of less than 1.7 wt% after 100 heating-cooling cycles. Moreover, TPCC exhibits excellent optical properties with a transmittance of over 90 % at room temperature and up to 96 % after heating. The thermal response analysis of TPCC demonstrates exceptional thermal-induced flexibility and good thermal stability, as well as recyclability and reshaping ability. This study may inspire others to design bio-based phase change composites with potential applications in thermal energy storage and management of smart-energy buildings, photothermal response devices, and waste heat-generating electronics.


Assuntos
Celulose Oxidada , Nanofibras , Celulose , Temperatura Alta , Temperatura , Polietilenoglicóis
4.
J Agric Food Chem ; 72(8): 4257-4266, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354318

RESUMO

Selenium nanoparticles (SeNPs) are important and safe food and feed additives that can be used for dietary supplementation. In this study, a mutagenic strain of Saccharomyces boulardii was employed to obtain biologically synthesized SeNPs (BioSeNPs) with the desired particle size by controlling the dosage and duration of sodium selenite addition, and the average particle size achieved was 55.8 nm with protease A encapsulation. Transcriptomic analysis revealed that increased expression of superoxide dismutase 1 (SOD1) in the mutant strain effectively promoted the synthesis of BioSeNPs and the formation of smaller nanoparticles. Under sodium selenite stress, the mutant strain exhibited significantly increased expression of glutathione peroxidase 2 (GPx2), which was significantly greater in the mutant strain than in the wild type, facilitating the synthesis of glutathione selenol and providing abundant substrates for the production of BioSeNPs. Furthermore, based on the experimental results and transcriptomic analysis of relevant genes such as sod1, gpx2, the thioredoxin reductase 1 gene (trr1) and the thioredoxin reductase 2 gene (trr2), a yeast model for the size-controlled synthesis of BioSeNPs was constructed. This study provides an important theoretical and practical foundation for the green synthesis of controllable-sized BioSeNPs or other metal nanoparticles with potential applications in the fields of food, feed, and biomedicine.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Saccharomyces boulardii , Selênio , Catálise , Saccharomyces boulardii/metabolismo , Selênio/metabolismo , Selenito de Sódio , Superóxido Dismutase/genética , Superóxido Dismutase-1
5.
Bioresour Technol ; 393: 130056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993070

RESUMO

In this study, a combined pretreatment involving autohydrolysis and p-toluenesulfonic acid (p-TsOH) was performed on poplar to coproduce xylooligosaccharides (XOSs) and monosaccharides. The autohydrolysis (180 °C, 30 min) yielded 53.2 % XOS and enhanced the delignification efficiency in the subsequent p-TsOH treatment. Furthermore, considerably high glucan contents (64.1 %∼83.1 %) were achieved in the combined pretreated substrates. However, their enzymatic digestibilities were found to be extremely poor (9.6 %∼14.2 %), which were even lower than the single p-TsOH pretreated substrates (10.2 %∼35.8 %). The underlying reasons were revealed by systematically investigating the effects of the single and combined pretreatment strategies on substrate properties. Moreover, the Tween 80 addition successfully reversed the adverse effects of combined pretreatment on the enzymatic hydrolysis, achieving a high glucose yield of 99.3 % at an enzyme loading of 10 filter paper units/g (FPU/g) glucan. These results deepen the understanding of the synergy of combined pretreatment on biomass fractionation and enzymatic saccharification.


Assuntos
Benzenossulfonatos , Lignina , Populus , Lignina/química , Polissorbatos , Hidrólise , Glucanos , Populus/química
6.
Int J Biol Macromol ; 257(Pt 2): 128712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081482

RESUMO

Wheat gluten (WG) shows great promise to synthesize environment-friendly wood adhesives. However, their weak bonding strength and poor water resistance have limited its application in the commercial wood-based panel industry. In this study, a novel WG-based adhesive was developed by constructing a multiple cross-linking network generated by covalent and non-covalent bonds. The potential mechanism was revealed by FT-IR analysis. Furthermore, their surface morphology, thermal stability, viscosity, and residual rate of adhesives with different compositions were systematically characterized and compared. The results showed that the hydrogen bonding, reactions between amine groups and tannin, and ring opening reaction of epoxy, synergistically contributed to generate a highly crosslinked network. The wet/boil water strength of the plywood prepared from WG/tannin/ethylene imine polymer (PEI)-glycerol triglycidyl ether (GTE) adhesive with the addition of 15 % GTE could reach 1.21 MPa and 1.20 MPa, respectively, and a mildew resistance ability was observed. This study provides a facile strategy to fabricate high-performance plant protein-based adhesives with desirable water resistance for practical application.


Assuntos
Glutens , Triticum , Taninos/química , Adesivos/química , Madeira/química , Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Small ; 19(52): e2302335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661587

RESUMO

Strong, conductive, and flexible materials with improving ion accessibility have attracted significant attention in electromagnetic interference (EMI) and foldable wearable electronics. However, it still remains a great challenge to realize high performance at the same time for both properties. Herein, a microscale structural design combined with nanostructures strategy to fabricate TOCNF(F)/Ti3 C2 Tx (M)@AgNW(A) composite films via a facile vacuum filtration process followed by hot pressing (TOCNF = TEMPO-oxidized cellulose nanofibrils, NW = nanowires) is described. The comparison reveals that different microscale structures can significantly influence the properties of thin films, especially their electrochemical properties. Impressively, the ultrathin MA/F/MA film with enhanced layer in the middle exhibits an excellent tensile strength of 107.9 MPa, an outstanding electrical conductivity of 8.4 × 106 S m-1 , and a high SSE/t of 26 014.52 dB cm2 g-1 . The assembled asymmetric MA/F/MA//TOCNF@CNT (carbon nanotubes) supercapacitor leads to a significantly high areal energy density of 49.08 µWh cm-2 at a power density of 777.26 µW cm-2 . This study proposes an effective strategy to circumvent the trade-off between EMI performance and electrochemical properties, providing an inspiration for the fabrication of multifunctional films for a wide variety of applications in aerospace, national defense, precision instruments, and next-generation electronics.

8.
Int J Biol Macromol ; 253(Pt 1): 126486, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37633559

RESUMO

Anti-ultraviolet material with cost-effectiveness, environmental friendliness, and multifunction is urgently needed to address the serious problem of ultraviolet radiation. However, traditional anti-ultraviolet products based on plastics are unsustainable and harmful to the environment. Herein, the cellulose films with a sandwich structure using a surface assembly technique were reported. Natural L-phenylalanine was grafted onto cellulose nanofibrils via amidation to enhance their UV-shielding property. To address the hydrophilic nature and limited mechanical strength of cellulose films, we employed octadecyltrichlorosilane and 4ARM-PEG-NH2 for hydrophobic coating and mechanical reinforcement, respectively. In addition to providing complete UV resistance in the wavelength range of 200-320 nm, sample OPT5 exhibited significantly improved tensile stress, Young's modulus, and toughness, measuring 174.09 MPa, 71.11 MPa, and 295.33 MJ/m3, respectively. Furthermore, due to the presence of antibacterial amine groups, the modified film demonstrated a satisfactory inhibitory effect on the growth of Escherichia coli and Bacillus subtilis. Compared to natural cellulose films, the hydrophobically modified material achieved a contact angle of up to 121.1°, which enabled efficient separation of oil-water mixtures with a maximum separation efficiency of 93.87 %. In summary, the proposed TOCNF-based UV-shielding film with multifunctionality holds great potential for replacing petrochemical-derived plastics and serving as an applicable and sustainable membrane material.


Assuntos
Celulose Oxidada , Raios Ultravioleta , Nanopartículas em Multicamadas , Celulose/química , Água
9.
Food Chem ; 427: 136642, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37364317

RESUMO

Low-molecular-weight-galactomannan (LMW-GM) is an edible polysaccharide with various biological activities. However, it is used in the field of neuroprotection. In this study, two types of LMW-GMs from Sesbania cannabina were obtained by gluconic acid extraction (GA-LMW-GM) and enzymatic hydrolysis (GMOS). The structure of GA-LMW-GM and GMOS were identified using different nuclear magnetic resonance (NMR) techniques. The antioxidant and neuroprotective activities of GA-LMW-GM and GMOS were evaluated in vitro/vivo. The results showed that both GA-LMW-GM and GMOS possess good free radicals scavenging ability in vitro with IC50 values of 1.9 mg/mL and 4.9 mg/mL for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals 2.8 mg/mL and 4.4 mg/mL for O2•- radicals, respectively. However, GA-LMW-GM was more effective at scavenging reactive oxygen species (ROS) in vivo and protecting the fundamental growth (with a recovery capability of 62.5%) and locomotor functions (with recovery capability of 193.7%) of zebrafish with neurological damage induced by Bisphenol AF.


Assuntos
Sesbania , Animais , Antioxidantes/farmacologia , Peso Molecular , Neuroproteção , Sesbania/química , Peixe-Zebra
10.
Carbohydr Polym ; 312: 120827, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059554

RESUMO

Stretchable and tough polysaccharide-based functional hydrogels have gained popularity for various applications. However, it still remains a great challenge to simultaneously own satisfactory stretchability and toughness, particularly when incorporating renewable xylan to offer sustainability. Herein, we describe a novel stretchable and tough xylan-based conductive hydrogel utilizing the natural feature of rosin derivative. The effect of different compositions on the mechanical properties and the physicochemical properties of corresponding xylan-based hydrogels were systematically investigated. Owing to the multiple non-covalent interactions among different components to dissipate energies and the strain-induced orientation of rosin derivative during the stretching, the highest tensile strength, strain, and toughness of xylan-based hydrogels could reach 0.34 MPa, 2098.4 %, and 3.79 ± 0.95 MJ/m3, respectively. Furthermore, by incorporating MXene as the conductive fillers, the strength and toughness of hydrogels were further enhanced to 0.51 MPa and 5.95 ± 1.19 MJ/m3. Finally, the synthesized xylan-based hydrogels were able to serve as a reliable and sensitive strain sensor to monitor the movements of human beings. This study provides new insights to develop stretchable and tough conductive xylan-based hydrogel, especially utilizing the natural feature of bio-based resources.


Assuntos
Hidrogéis , Xilanos , Humanos , Condutividade Elétrica , Movimento
11.
Bioresour Technol ; 370: 128510, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538959

RESUMO

To explore the interaction mechanism of pseudo-lignin (PL) with cellulase and its influence on cellulose hydrolysis, different PLs were extracted from pretreated bamboo holocellulose (HC) using different organic solvents. Meanwhile, the real-time interaction of PL and cellulase was analyzed using surface plasmon resonance (SPR). The results showed that the extraction effect of the tetrahydrofuran and 1, 4-dioxane/water solution on PL was more effective than the ethanol/water solution. The inhibition of PL fraction obtained from HC by acid pretreatment with higher temperature showed less effect on Avicel's enzymatic hydrolysis. SPR analysis revealed that PL formed at higher pretreatment temperature had a lower dissociation rate after adsorption with cellulase. Besides, the binding affinity of PL (160 °C) to cellulase was much greater than that of PL obtained from 180 °C, indicating PL extracted at higher temperature treated biomass is more easily dissociated from cellulase after binding.


Assuntos
Celulase , Celulases , Celulose/metabolismo , Lignina/metabolismo , Ressonância de Plasmônio de Superfície , Hidrólise , Água , Celulase/metabolismo
12.
Int J Biol Macromol ; 227: 462-471, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521712

RESUMO

Conductive hydrogels have attracted increasing attention for applications in wearable and flexible strain sensors. However, owing to their relatively weak strength, poor elasticity, and lack of anti-freezing ability, their applications have been limited. Herein, we present a skin-mimicking strategy to fabricate cellulose-enhanced, strong, elastic, highly conductive, and anti-freezing hydrogels. Self-assembly of cellulose to fabricate a cellulose skeleton is essential for realizing a skin-mimicking design. Furthermore, two methods, in situ polymerization and solvent replacement, were compared and investigated to incorporate conductive and anti-freezing components into hydrogels. Consequently, when the same ratio of glycerol and lithium chloride was used, the anti-freezing hydrogels prepared by in situ polymerization showed relatively higher strength (1.0 MPa), while the solvent-replaced hydrogels exhibited higher elastic recovery properties (94.6 %) and conductivity (4.5 S/m). In addition, their potential as strain sensors for monitoring human behavior was analyzed. Both hydrogels produced reliable signals and exhibited high sensitivity. This study provides a new horizon for the fabrication of strain sensors that can be applied in various environments.


Assuntos
Celulose , Hidrogéis , Humanos , Elasticidade , Glicerol , Condutividade Elétrica , Solventes
13.
Bioresour Technol ; 364: 128059, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191752

RESUMO

The adsorbed ash and lignin contained in waste wheat straw (WWS) have been the essential factors restricting its high-value utilization in biorefinery. Hence, humic acid (HA) and FeCl3 as the additives of hydrothermal pretreatment were applied to simultaneously enhance the removal of lignin and eliminate the acid buffering of ash in WWS, respectively. The results showed that the xylan and lignin removal of WWS pretreated with 10 g/L HA and 20 mM FeCl3 could be efficiently increased from 61.4% to 72.9% and from 14.7% to 38.7%, respectively. The enzymatic hydrolysis efficiency and ethanol yield of WWS were increased this way from 44.4% to 82.7% and from 20.55% to 36.86%, respectively. According to the characterization of WWS, the synergistic interaction between HA and FeCl3 was beneficial to the cellulose accessibility and surface lignin area of WWS changed in positive directions, leading to the improvement of hydrolysis efficiency.


Assuntos
Lignina , Triticum , Fermentação , Substâncias Húmicas , Hidrólise
14.
Int J Biol Macromol ; 223(Pt B): 1633-1640, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36270399

RESUMO

Light pollution from ultraviolet (UV) radiation is gaining growing concerns, as the emissions and burning of fossil fuels destroyed the ozone layer. Seeking a solution against skin exposure to excessive radiation is an urgent requirement. In this study, nicotinamide (NA), the main component of vitamin B3, was introduced as a new modifier into Tempo-oxidized cellulose nanofibrils (TOCNFs) together with the physical cross-linking with tannin acid (TA) to improve anti-UV performance of the nanocomposite films. Incorporation of NA into the films presents distinguished UV shielding capability UVB wavelength range from 200 nm to 320 nm (NTA1-5) due to the introduced functional groups like CO and benzene rings. Moreover, mechanical properties were notably enhanced, which overcome the low strength of common nanocellulosic materials. The stress increased from 69.8 MPa to 116.3 MPa, and the toughness can reach 131.58 MJ/m3 by tuning the additional amount of NA. Meanwhile, TGA and DTG analysis demonstrated that the incorporation of amide bonds and TA into the composite films greatly improved the thermal stability. Thus, the proposed materials fabricated from natural biomolecules show great potential in serving as new kinds of UV-resistant products in the application areas of sunscreen, protective clothing, and building materials.


Assuntos
Celulose Oxidada , Nanocompostos , Celulose Oxidada/química , Celulose/química , Niacinamida , Nanocompostos/química , Protetores Solares
15.
Front Bioeng Biotechnol ; 10: 1006925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185456

RESUMO

In this work, hydrothermal pretreatment (autohydrolysis) was coupled with endo-xylanase enzymatic hydrolysis for bamboo shoot shell (BSS) to produce glucose and valuable xylooligosaccharides (XOS) rich in xylobiose (X2) and xylotriose (X3). Results showed that the enzymatic hydrolysis efficiency of pretreated BSS residue reached 88.4% with addition of PEG during the hydrolysis process. To enrich the portions of X2-X3 in XOS, endo-xylanase was used to hydrolyze the XOS in the prehydrolysate, which was obtained at the optimum condition (170°C, 50 min). After enzymatic hydrolysis, the yield of XOS reached 25.6%, which contained 76.7% of X2-X3. Moreover, the prehydrolysate contained a low concentration of fermentation inhibitors (formic acid 0.7 g/L, acetic acid 2.6 g/L, furfural 0.7 g/L). Based on mass balance, 32.1 g of glucose and 6.6 g of XOS (containing 5.1 g of X2-X3) could be produced from 100.0 g of BSS by the coupled technology. These results indicate that BSS could be an economical feedstock for the production of glucose and XOS.

16.
Int J Biol Macromol ; 222(Pt A): 671-679, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174858

RESUMO

Factors causing differences in immune activities between pectin and pectin-derived oligosaccharides have not been fully studied. In this article, four samples with different molecular weights and monosaccharide compositions, including polygalacturonic acid (poly-GA) and its oligosaccharide (oligo-GA), navel orange peel pectin (NP) and its oligosaccharide (oligo-NP), were used to compare their immunomodulatory properties on RAW264.7 cells. All samples had nontoxic effect on cells, oligo-GA and oligo-NP could increase the production of nitric oxide and cytokines to a much higher level than poly-GA and NP. The findings revealed that reducing the molecular weight and preserving the branched regions of pectin-derived samples could improve their immune-enhancing effects on macrophages. Interestingly, the addition of TAK-242 (TLR4 inhibitor) also demonstrated that the tested pectin oligosaccharides could stimulate the activation of macrophages through TLR4 signaling pathway. These results confirmed the potential value of pectin oligosaccharides, and provided theoretical support for their application in the pharmaceutical industry.


Assuntos
Pectinas , Receptor 4 Toll-Like , Pectinas/farmacologia , Pectinas/metabolismo , Oligossacarídeos/farmacologia , Monossacarídeos , Peso Molecular
17.
Bioresour Technol ; 362: 127825, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36031133

RESUMO

In this study, lignin blockers including non-catalytic protein and surfactants were employed to promote enzymatic digestibility of pretreated poplars. Among them, Tween 80 exhibited the most pronounced facilitation, improving the glucose yield from 26.6% to 99.6% at a low enzyme loading (10 FPU/g glucan), and readily reduced the required cellulase loading by 75%. The underlying mechanism for this remarkable improvement on glucose yields by Tween 80 was elucidated. The impacts of Tween 80 on the enzyme-lignin interaction were explored by quartz crystal microbalance analysis, revealing that the binding rate of Tween 80 on lignin surfaces was 3-fold higher than that of enzyme. More importantly, Tween 80 remarkably decreased the binding capacity and binding rate of enzyme on lignins. Furthermore, the substrate properties dominating the increase in glucose yields with Tween 80 were explored. The results facilitate to understand the underlying mechanism of the promotion of surfactants on enzymatic hydrolysis.


Assuntos
Celulase , Lignina , Celulase/metabolismo , Solventes Eutéticos Profundos , Glucose , Hidrólise , Lignina/química , Polissorbatos , Solventes , Tensoativos/química
18.
Carbohydr Polym ; 294: 119760, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868784

RESUMO

With the development of wearable devices, the fabrication of strong, tough, antibacterial, and conductive hydrogels for sensor applications is necessary but remains challenging. Here, a skin-inspired biomimetic strategy integrated with in-situ reduction has been proposed. The self-assembly of cellulose to generate a cellulose skeleton was essential to realize the biomimetic structural design. Furthermore, in-situ generation of silver nanoparticles on the skeleton was easily achieved by a heating process. This process not only offered the excellent antibacterial property to hydrogels, but also improved the mechanical properties of hydrogels due to the elimination of negative effect of silver nanoparticles aggregation. The highest tensile strength and toughness could reach 2.0 MPa and 11.95 MJ/m3, respectively. Moreover, a high detection range (up to 1300%) and sensitivity (gauge factor = 4.4) was observed as the strain sensors. This study provides a new horizon to fabricate strong, tough and functional hydrogels for various applications in the future.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Antibacterianos/farmacologia , Biomimética , Celulose , Condutividade Elétrica , Hidrogéis/química , Prata
19.
Carbohydr Polym ; 292: 119641, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725201

RESUMO

In order to produce xylooligosaccharides (XOS) with excellent prebiotics properties from industrial-derived xylan residue (IDXR), maleic acid (MA) and citric acid (CA) were used as catalysts under different treatment conditions. Under the identified optimum conditions (0.1 M of MA and 0.5 M of CA at 150 °C for 40 min), CA showed a better ability than MA to maximumly produce XOS. The yields of XOS from MA and CA treatments were 48.9% and 52.3%, which were comprised of X2-X6 proportions of 69.47% and 66.70%, respectively. Anaerobic fermentation results demonstrated that both XOS-CA and XOS-MA exhibited pronounced prebiotic activity for proliferating Bifidobacterium adolescentis (B. adolescentis) and Lactobacillus acidophilus (L. acidophilus). XOS-CA possessed the better ability for B. adolescentis to produce the short-chain fatty acid (SCFA), while XOS-MA outperformed XOS-CA for L. acidophilus to produce SCFA. These results imply organic acid treatments can be applied to produce XOS with excellent prebiotic properties from IDXR.


Assuntos
Glucuronatos/análise , Oligossacarídeos/análise , Prebióticos , Xilanos , Ácidos/química , Ácidos Graxos Voláteis/química , Glucuronatos/química , Hidrólise , Oligossacarídeos/química
20.
Bioresour Technol ; 360: 127524, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35764283

RESUMO

To improve the enzymatic digestibility of dilute acid pretreated bamboo residue (DABR), surfactants including PEG 4000 and Tween 80 were added to prevent the non-productive adsorption between residual lignin and enzyme. At the optimal loadings (e.g., 0.2 and 0.3 g surfactant/g lignin), the enzymatic digestibility of DABR improved from 29.4% to 64.6% and 61.6% for PEG 4000 and Tween 80, respectively. Furthermore, the promoting mechanism of these surfactants on enzymatic hydrolysis was investigated by real-time surface plasmon resonance (SPR) and fluorescence spectroscopy. Results from SPR analysis showed that Tween 80 outperformed PEG 4000 in terms of dissociating the irreversible cellulase adsorption onto lignin. Fluorescence quenching mechanism revealed that PEG 4000 and Tween 80 intervened the interaction between lignin and cellulase by hydrogen bonds/Van der Waals and hydrophobic action, respectively. This work provided an in-depth understanding of the mechanisms of PEG 4000 and Tween 80 on enhancing the enzymatic hydrolysis efficiency.


Assuntos
Celulase , Lignina , Celulase/química , Hidrólise , Lignina/química , Polissorbatos , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA