Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Arch Gerontol Geriatr ; 123: 105435, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38583266

RESUMO

BACKGROUND: Recent research reported that frailty was prevalent among adults with chronic kidney disease (CKD) in clinical trials, and monocytes illustrated a similar difference in these two diseases compared to the normal. However, the scientific evidence for a causal relationship between these two diseases was lacking, with further exploration into whether monocytes co-regulate them. METHODS: We aimed to integrate large-scale Mendelian randomization (MR) and single-cell transcriptome analysis to determine whether there was a causal relationship between frailty and CKD (Bidirectional two-sample Mendelian determined the causal direction), whether monocytes impacted them, and whether the two diseases shared genetic variation sites. Based on 441 Genome-wide association study datasets, this study utilized five MR methods, multiple sensitivity analysis, and corresponding single-cell transcriptome datasets as proof. RESULTS: The association between frailty and CKD was significantly causal, and frailty increased the risk of CKD in patients (OR (95 %CI): 3.5597 (1.8369-6.8982), p = 0.000168909). The exposure monocyte can increase the risk of frailty and CKD in patients, especially with high expression of HLA genes in these cells. The existing two-sample MR results cannot reject the hypothesis that monocytes increase the risk of CKD by inducing frailty. rs9275271' 1mb genetic location above and below had been proven to be an effective genetic space for both frailty and CKD. CONCLUSION: We conducted the largest MR to date on frailty, monocyte, and CKD, and found a significant causal association between frailty and CKD, with the single-cell analysis confirmed. The exposure monocytes increased the risk of frailty and CKD, particularly with high expression of HLA genes in these cells. We identified a potential common genetic variant space, rs9275271, associated with frailty and CKD, providing insights into the genetic basis of these conditions.

2.
BMC Infect Dis ; 24(1): 280, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438963

RESUMO

BACKGROUND: The causal association between gut microbiome and HIV infection remains to be elucidated. We conducted a two-sample mendelian randomization analysis to estimate the causality between gut microbiome and HIV infection. METHODS: Publicly released genome-wide association studies summary data were collected to perform the mendelian analysis. The GWAS summary data of gut microbiome was retrieved from the MiBioGen consortium, which contains 18 340 samples from 24 cohorts. GWAS summary data of HIV infection was collected from the R5 release of FinnGen consortium, including 357 HIV infected cases and 218 435 controls. The SNPs were selected as instrumental variables according to our selection rules. And SNPs with a F-statistics less than ten were regarded as weak instrumental variables and excluded. Mendelian randomization analysis was conducted by five methods, including inverse variance weighted (IVW), MR-Egger, weighted median, weighted mode, and simple mode. The Cochran's Q test and MR-Egger intercept test were performed to identify heterogeneity and pleiotropy. Leave-one-out analysis were used to test the sensitivity of the results. RESULTS: Fifteen gut microbiota taxa showed causal effects on HIV infection according to the MR methods. Four taxa were observed to increase the risk of HIV infection, including Ruminococcaceae (OR: 2.468[1.043, 5.842], P: 0.039), Ruminococcaceae UCG005 (OR: 2.051[1.048, 4.011], P: 0.036), Subdoligranulum (OR: 3.957[1.762, 8.887], P < 0.001) and Victivallis (OR: 1.605[1.012, 2.547], P=0.044). Erysipelotrichaceae was protective factor of HIV infection (OR: 0.278[0.106, 0.731], P < 0.001) and Methanobrevibacter was also found to be associated with reduced risk of HIV infection (OR: 0.509[0.265, 0.980], P=0.043). Horizontal pleiotropy was found for Fusicatenibacter (P<0.05) according to the MR-Egger regression intercept analysis. No heterogeneity was detected. CONCLUSION: Our results demonstrate significant causal effects of gut microbiome on HIV infection. These findings facilitate future studies to develop better strategies for HIV prophylaxis through gut microbiome regulation. Further explorations are also warranted to dissect the mechanism of how gut microbiome affects HIV susceptibility.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Humanos , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Causalidade , Nonoxinol
3.
Heliyon ; 10(6): e28174, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545143

RESUMO

Purpose: Although the role of SARS-CoV-2-specfic immune cells has been revealed, a comprehensive understanding of immune patterns remains unknown. Methods: In this work, unsupervised consensus clustering analysis was used to classify 240 coronavirus disease 2019 (COVID-19) patients into different immune subtypes. Next, we performed differentially expressed analysis between different immune subtypes. Functional enrichment and pathway analyses were employed to reveal the biological significance of these differentially expressed genes (DEGs). Besides, we compared feature score of some DEGs between whole blood and lung tissues. Then, we utilized the "GSVA" algorithm to construct an immune cell infiltrating (ICI) tool based on the categories of these DEGs. Finally, we developed a nomogram associated with severity of COVID-19. Results: As a result, we identified two immune subtypes, and 238 DEGs which mainly participated in some immune-related functions and the COVID-19 pathway. Most importantly, the 238 DEGs could reflect the characterization of immune patterns in lung tissues. ICI scores were markedly negative associated with immune scores. It was worth noting that ICI score was a strong indicator for severity of COVID-19 and could accurately predict the severity of COVID-19. Conclusion: Our findings could provide more valuable strategies for the management of COVID-19.

4.
Heliyon ; 10(3): e25570, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352751

RESUMO

The recurrence or resistance to treatment of primary liver cancer (PLL) is significantly related to the heterogeneity present within the tumor. In this study, we integrated prognosis risk score, mRNAsi index, and immune characteristics clustering to classify patients. The four subtypes obtained from the combined classification are associated with PLC's prognosis and drug response. In these subtypes, we observed mRNAsiH_ICCA subtype, the intersection between high mRNAsi and immune characteristics clustering A, had the worst prognosis. Specifically, immune characteristics clustering B (ICC_B) had high drug sensitivity in most drugs regardless of the value of mRNAsi. On the other hand, patients with low mRNAsi responded better to ten drugs including KU-55933 and NU7441, while patients with high mRNAsi might benefit from drugs like Leflunomide. By matching the specific characteristics of each combined subtype with the drug-induced cell line expression profile, we identified a group of potential therapeutic drugs that might regulate the expression of disease signature genes. We developed a feasible multiple combined typing strategy, hoping to guide therapeutic selection and promote the development of precision medicine.

5.
Mol Biotechnol ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261152

RESUMO

Recent researches reported that neurotrophins can promote glioma growth/invasion but the relevant model for predicting patients' survival in Lower-Grade Gliomas (LGGs) lacked. In this study, we adopted univariate Cox analysis, LASSO regression, and multivariate Cox analysis to determine a signature including five neurotrophin-related genes (NTGs), CLIC1, SULF2, TGIF1, TTF2, and WEE1. Two-sample Mendelian Randomization (MR) further explored whether these prognostic-related genes were genetic variants that increase the risk of glioma. A total of 1306 patients have been included in this study, and the results obtained from the training set can be verified by four independent validation sets. The low-risk subgroup had longer overall survival in five datasets, and its AUC values all reached above 0.7. The risk groups divided by the NTGs signature exhibited a distinct difference in targeted therapies from the copy-number variation, somatic mutation, LGG's surrounding microenvironment, and drug response. MR corroborated that TGIF1 was a potential causal target for increasing the risk of glioma. Our study identified a five-NTGs signature that presented an excellent survival prediction and potential biological function, providing new insight for the selection of LGGs therapy.

6.
J Cancer Res Clin Oncol ; 150(2): 37, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279056

RESUMO

BACKGROUND: Recent research reported that mononuclear phagocyte system (MPS) can contribute to immune defense but the classification of head and neck squamous cell carcinoma (HNSCC) patients based on MPS-related multi-omics features using machine learning lacked. METHODS: In this study, we obtain marker genes for MPS through differential analysis at the single-cell level and utilize "similarity network fusion" and "MoCluster" algorithms to cluster patients' multi-omics features. Subsequently, based on the corresponding clinical information, we investigate the prognosis, drugs, immunotherapy, and biological differences between the subtypes. A total of 848 patients have been included in this study, and the results obtained from the training set can be verified by two independent validation sets using "the nearest template prediction". RESULTS: We identified two subtypes of HNSCC based on MPS-related multi-omics features, with CS2 exhibiting better predictive prognosis and drug response. CS2 represented better xenobiotic metabolism and higher levels of T and B cell infiltration, while the biological functions of CS1 were mainly enriched in coagulation function, extracellular matrix, and the JAK-STAT signaling pathway. Furthermore, we established a novel and stable classifier called "getMPsub" to classify HNSCC patients, demonstrating good consistency in the same training set. External validation sets classified by "getMPsub" also illustrated similar differences between the two subtypes. CONCLUSIONS: Our study identified two HNSCC subtypes by machine learning and explored their biological difference. Notably, we constructed a robust classifier that presented an excellent classifying prediction, providing new insight into the precision medicine of HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Multiômica , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Sistema Fagocitário Mononuclear , Imunoterapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Prognóstico , Microambiente Tumoral
7.
Front Cell Infect Microbiol ; 13: 1260068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035339

RESUMO

Objectives: Recent studies pointed out that gut microbiome dysbiosis in HIV infection was possibly confounded in men who have sex with men (MSM), but there is a lack of evidence. It also remained unclear how MSM-associated gut microbiome dysbiosis affected human health. This study aimed to compare the differences in gut microbiome changes between HIV and MSM and reveal the potential impacts of MSM-associated gut microbiome dysbiosis on the immune system. Methods: We searched available studies based on the PubMed database, and all gut microbiome changes associated with HIV infection and MSM were extracted from the enrolled studies. The gutMgene database was used to identify the target genes and metabolites of the gut microbiome. Bioinformatic technology and single-cell RNA sequencing data analysis were utilized to explore the impacts of these gut microbiome changes on human immunity. Results: The results showed significant overlaps between the gut microbiome associated with HIV and that of MSM. Moreover, bioinformatic analysis revealed that gut microbiome dysbiosis in MSM had an impact on several pathways related to immunity, including the IL-17 signaling pathway and Th17 cell differentiation. Additionally, target genes of MSM-associated gut microbiome were found to be highly expressed in monocytes and lymphocytes, suggesting their potential regulatory role in immune cells. Furthermore, we found that MSM-associated gut microbiome could produce acetate and butyrate which were reported to increase the level of inflammatory factors. Conclusion: In conclusion, this study highlighted that MSM-associated gut microbiome dysbiosis might increase the risk of HIV acquisition by activating the immune system. Further studies are expected to elucidate the mechanism by which gut microbiome dysbiosis in MSM modulates HIV susceptibility.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Infecções , Minorias Sexuais e de Gênero , Masculino , Humanos , Infecções por HIV/complicações , Microbioma Gastrointestinal/genética , Homossexualidade Masculina , Disbiose , Homeostase
8.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895143

RESUMO

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Increasing evidence highlights the significant role of immune-related genes (IRGs) in ACC progression and immunotherapy, but the research is still limited. Based on the Cancer Genome Atlas (TCGA) database, immune-related molecular subtypes were identified by unsupervised consensus clustering. Univariate Cox analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression were employed to further establish immune-related gene signatures (IRGS). An evaluation of immune cell infiltration, biological function, tumor mutation burden (TMB), predicted immunotherapy response, and drug sensitivity in ACC patients was conducted to elucidate the applicative efficacy of IRGS in precision therapy. ACC patients were divided into two molecular subtypes through consistent clustering. Furthermore, the 3-gene signature (including PRKCA, LTBP1, and BIRC5) based on two molecular subtypes demonstrated consistent prognostic efficacy across the TCGA and GEO datasets and emerged as an independent prognostic factor. The low-risk group exhibited heightened immune cell infiltration, TMB, and immune checkpoint inhibitors (ICIs), associated with a favorable prognosis. Pathways associated with drug metabolism, hormone regulation, and metabolism were activated in the low-risk group. In conclusion, our findings suggest IRGS can be used as an independent prognostic biomarker, providing a foundation for shaping future ACC immunotherapy strategies.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/terapia , Prognóstico , Análise por Conglomerados , Bases de Dados Factuais , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/terapia , Microambiente Tumoral
9.
Cells ; 12(5)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36899891

RESUMO

Increasing evidence confirms that tumor microenvironment (TME) can influence tumor progression and treatment, but TME is still understudied in adrenocortical carcinoma (ACC). In this study, we first scored TME using the xCell algorithm, then defined genes associated with TME, and then used consensus unsupervised clustering analysis to construct TME-related subtypes. Meanwhile, weighted gene co-expression network analysis was used to identify modules correlated with TME-related subtypes. Ultimately, the LASSO-Cox approach was used to establish a TME-related signature. The results showed that TME-related scores in ACC may not correlate with clinical features but do promote a better overall survival. Patients were classified into two TME-related subtypes. Subtype 2 had more immune signaling features, higher expression of immune checkpoints and MHC molecules, no CTNNB1 mutations, higher infiltration of macrophages and endothelial cells, lower tumor immune dysfunction and exclusion scores, and higher immunophenoscore, suggesting that subtype 2 may be more sensitive to immunotherapy. 231 modular genes highly relevant to TME-related subtypes were identified, and a 7-gene TME-related signature that independently predicted patient prognosis was established. Our study revealed an integrated role of TME in ACC and helped to identify those patients who really responded to immunotherapy, while providing new strategies on risk management and prognosis prediction.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Células Endoteliais , Microambiente Tumoral , Imunoterapia
10.
Front Immunol ; 14: 1090040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825022

RESUMO

Background: Glioblastoma multiforme (GBM) is the most common cancer of the central nervous system, while Parkinson's disease (PD) is a degenerative neurological condition frequently affecting the elderly. Neurotrophic factors are key factors associated with the progression of degenerative neuropathies and gliomas. Methods: The 2601 neurotrophic factor-related genes (NFRGs) available in the Genecards portal were analyzed and 12 NFRGs with potential roles in the pathogenesis of Parkinson's disease and the prognosis of GBM were identified. LASSO regression and random forest algorithms were then used to screen the key NFRGs. The correlation of the key NFRGs with immune pathways was verified using GSEA (Gene Set Enrichment Analysis). A prognostic risk scoring system was constructed using LASSO (Least absolute shrinkage and selection operator) and multivariate Cox risk regression based on the expression of the 12 NFRGs in the GBM cohort from The Cancer Genome Atlas (TCGA) database. We also investigated differences in clinical characteristics, mutational landscape, immune cell infiltration, and predicted efficacy of immunotherapy between risk groups. Finally, the accuracy of the model genes was validated using multi-omics mutation analysis, single-cell sequencing, QT-PCR, and HPA. Results: We found that 4 NFRGs were more reliable for the diagnosis of Parkinson's disease through the use of machine learning techniques. These results were validated using two external cohorts. We also identified 7 NFRGs that were highly associated with the prognosis and diagnosis of GBM. Patients in the low-risk group had a greater overall survival (OS) than those in the high-risk group. The nomogram generated based on clinical characteristics and risk scores showed strong prognostic prediction ability. The NFRG signature was an independent prognostic predictor for GBM. The low-risk group was more likely to benefit from immunotherapy based on the degree of immune cell infiltration, expression of immune checkpoints (ICs), and predicted response to immunotherapy. In the end, 2 NFRGs (EN1 and LOXL1) were identified as crucial for the development of Parkinson's disease and the outcome of GBM. Conclusions: Our study revealed that 4 NFRGs are involved in the progression of PD. The 7-NFRGs risk score model can predict the prognosis of GBM patients and help clinicians to classify the GBM patients into high and low risk groups. EN1, and LOXL1 can be used as therapeutic targets for personalized immunotherapy for patients with PD and GBM.


Assuntos
Glioblastoma , Glioma , Doença de Parkinson , Idoso , Humanos , Glioblastoma/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Sistema Nervoso Central , Fatores de Risco
11.
Front Endocrinol (Lausanne) ; 13: 1056310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568076

RESUMO

Background: Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults and is highly metastatic, resulting in a poor patient prognosis. Sphingolipid metabolism plays an important role in tumor development, diagnosis, and prognosis. This study aimed to establish a reliable signature based on sphingolipid metabolism genes (SMGs), thus providing a new perspective for assessing immunotherapy response and prognosis in patients with UVM. Methods: In this study, SMGs were used to classify UVM from the TCGA-UVM and GEO cohorts. Genes significantly associated with prognosis in UVM patients were screened using univariate cox regression analysis. The most significantly characterized genes were obtained by machine learning, and 4-SMGs prognosis signature was constructed by stepwise multifactorial cox. External validation was performed in the GSE84976 cohort. The level of immune infiltration of 4-SMGs in high- and low-risk patients was analyzed by platforms such as CIBERSORT. The prediction of 4-SMGs on immunotherapy and immune checkpoint blockade (ICB) response in UVM patients was assessed by ImmuCellAI and TIP portals. Results: 4-SMGs were considered to be strongly associated with the prognosis of UVM and were good predictors of UVM prognosis. Multivariate analysis found that the model was an independent predictor of UVM, with patients in the low-risk group having higher overall survival than those in the high-risk group. The nomogram constructed from clinical characteristics and risk scores had good prognostic power. The high-risk group showed better results when receiving immunotherapy. Conclusions: 4-SMGs signature and nomogram showed excellent predictive performance and provided a new perspective for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology studies.


Assuntos
Melanoma , Adulto , Humanos , Prognóstico , Melanoma/genética , Aprendizado de Máquina , Esfingolipídeos
12.
BMC Cancer ; 22(1): 1274, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474171

RESUMO

BACKGROUND: This study aimed to use single-cell RNA-seq (scRNA-seq) to discover marker genes in endothelial cells (ECs) and construct a prognostic model for glioblastoma multiforme (GBM) patients in combination with traditional high-throughput RNA sequencing (bulk RNA-seq). METHODS: Bulk RNA-seq data was downloaded from The Cancer Genome Atlas (TCGA) and The China Glioma Genome Atlas (CGGA) databases. 10x scRNA-seq data for GBM were obtained from the Gene Expression Omnibus (GEO) database. The uniform manifold approximation and projection (UMAP) were used for downscaling and cluster identification. Key modules and differentially expressed genes (DEGs) were identified by weighted gene correlation network analysis (WGCNA). A non-negative matrix decomposition (NMF) algorithm was used to identify the different subtypes based on DEGs, and multivariate cox regression analysis to model the prognosis. Finally, differences in mutational landscape, immune cell abundance, immune checkpoint inhibitors (ICIs)-associated genes, immunotherapy effects, and enriched pathways were investigated between different risk groups. RESULTS: The analysis of scRNA-seq data from eight samples revealed 13 clusters and four cell types. After applying Fisher's exact test, ECs were identified as the most important cell type. The NMF algorithm identified two clusters with different prognostic and immunological features based on DEGs. We finally built a prognostic model based on the expression levels of four key genes. Higher risk scores were significantly associated with poorer survival outcomes, low mutation rates in IDH genes, and upregulation of immune checkpoints such as PD-L1 and CD276. CONCLUSION: We built and validated a 4-gene signature for GBM using 10 scRNA-seq and bulk RNA-seq data in this work.


Assuntos
Células Endoteliais , Glioblastoma , Humanos , Prognóstico , Glioblastoma/genética , Sequência de Bases , RNA-Seq , Antígenos B7
13.
Front Genet ; 13: 1010361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338988

RESUMO

Background: Parkinson's disease (PD) is a neurodegenerative disease commonly seen in the elderly. On the other hand, cuprotosis is a new copper-dependent type of cell death that can be observed in various diseases. Methods: This study aimed to identify potential novel biomarkers of Parkinson's disease by biomarker analysis and to explore immune cell infiltration during the onset of cuprotosis. Gene expression profiles were retrieved from the GEO database for the GSE8397, GSE7621, GSE20163, and GSE20186 datasets. Three machine learning algorithms: the least absolute shrinkage and selection operator (LASSO), random forest, and support vector machine-recursive feature elimination (SVM-RFE) were used to screen for signature genes for Parkinson's disease onset and cuprotosis-related genes (CRG). Immune cell infiltration was estimated by ssGSEA, and cuprotosis-related genes associated with immune cells and immune function were examined using spearman correlation analysis. Nomogram was created to validate the accuracy of these cuprotosis-related genes in predicting PD disease progression. Classification of Parkinson's specimens using consensus clustering methods. Result: Three PD datasets from the Gene Expression Omnibus (GEO) database were combined after eliminating batch effects. By ssGSEA, we identified three cuprotosis-related genes ATP7A, SLC31A1, and DBT associated with immune cells or immune function in PD and more accurate for the diagnosis of Parkinson's disease course. Patients could benefit clinically from a characteristic line graph based on these genes. Consistent clustering analysis identified two subtypes, with the C2 subtype exhibiting higher immune cell infiltration and immune function. Conclusion: In conclusion, our study reveals that several newly identified cuprotosis-related genes intervene in the progression of Parkinson's disease through immune cell infiltration.

14.
Cancers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36358764

RESUMO

Although N7-methylguanosine (m7G) modification serves as a tumor promoter in bladder cancer (BLCA), the comprehensive role of m7G-related characterization in BLCA remains unclear. In this study, we systematically evaluated the m7G-related clusters of 760 BLCA patients through consensus unsupervised clustering analysis. Next, we investigated the underlying m7G-related genes among these m7G-related clusters. Univariate Cox and LASSO regressions were used for screening out prognostic genes and for reducing the dimension, respectively. Finally, we developed a novel m7G-related scoring system via the GSVA algorithm. The correlation between tumor microenvironment, prediction of personalized therapies and this m7G-related signature was gradually revealed. We first identified three m7G-related clusters and 1108 differentially expressed genes relevant to the three clusters. Based on the profile of 1108 genes, we divided BLCA patients into two clusters, which were quantified by our established m7G-related scoring system. Patients with higher m7G-related scores tended to have a better OS and more chances to benefit from immunotherapy. A significantly negative connection between sensitivity to classic chemotherapeutic drugs and m7G-related signature was uncovered. In summary, our data show that m7G-related characterization of BLCA patients can be of value for prognostic stratification and for patient-oriented therapeutic options, designing personalized treatment strategies in the preclinical setting.

15.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233273

RESUMO

Although some biomarkers have been used to predict prognosis of lower-grade gliomas (LGGs), a pathway-related signature associated with immune response has not been developed. A key signaling pathway was determined according to the lowest adjusted p value among 50 hallmark pathways. The least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox analyses were performed to construct a pathway-related gene signature. Somatic mutation, drug sensitivity and prediction of immunotherapy analyses were conducted to reveal the value of this signature in targeted therapies. In this study, an allograft rejection (AR) pathway was considered as a crucial signaling pathway, and we constructed an AR-related five-gene signature, which can independently predict the prognosis of LGGs. High-AR LGG patients had higher tumor mutation burden (TMB), Immunophenscore (IPS), IMmuno-PREdictive Score (IMPRES), T cell-inflamed gene expression profile (GEP) score and MHC I association immunoscore (MIAS) than low-AR patients. Most importantly, our signature can be validated in four immunotherapy cohorts. Furthermore, IC50 values of the six classic chemotherapeutic drugs were significantly elevated in the low-AR group compared with the high-AR group. This signature might be regarded as an underlying biomarker in predicting prognosis for LGGs, possibly providing more therapeutic strategies for future clinical research.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/terapia , Humanos , Imunidade , RNA Mensageiro/genética
16.
Brain Sci ; 12(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36291283

RESUMO

Low-grade glioma (LGG) is a highly aggressive disease in the skull. On the other hand, anoikis, a specific form of cell death induced by the loss of cell contact with the extracellular matrix, plays a key role in cancer metastasis. In this study, anoikis-related genes (ANRGs) were used to identify LGG subtypes and to construct a prognostic model for LGG patients. In addition, we explored the immune microenvironment and enrichment pathways between different subtypes. We constructed an anoikis-related gene signature using the TCGA (The Cancer Genome Atlas) cohort and investigated the differences between different risk groups in clinical features, mutational landscape, immune cell infiltration (ICI), etc. Kaplan-Meier analysis showed that the characteristics of ANRGs in the high-risk group were associated with poor prognosis in LGG patients. The risk score was identified as an independent prognostic factor. The high-risk group had higher ICI, tumor mutation load (TMB), immune checkpoint gene expression, and therapeutic response to immune checkpoint blockers (ICB). Functional analysis showed that these high-risk and low-risk groups had different immune statuses and drug sensitivity. Risk scores were used together with LGG clinicopathological features to construct a nomogram, and Decision Curve Analysis (DCA) showed that the model could enable patients to benefit from clinical treatment strategies.

17.
Front Immunol ; 13: 1018685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263048

RESUMO

Background: Head and neck squamous cell carcinoma (HNSCC), the most common head and neck cancer, is highly aggressive and heterogeneous, resulting in variable prognoses and immunotherapeutic outcomes. Natural killer (NK) cells play essential roles in malignancies' development, diagnosis, and prognosis. The purpose of this study was to establish a reliable signature based on genes related to NK cells (NRGs), thus providing a new perspective for assessing immunotherapy response and prognosis of HNSCC patients. Methods: In this study, NRGs were used to classify HNSCC from the TCGA-HNSCC and GEO cohorts. The genes were evaluated using univariate cox regression analysis based on the differential analysis of normal and tumor samples in TCGA-HNSCC conducted using the "limma" R package. Thereafter, we built prognostic gene signatures using LASSO-COX analysis. External validation was carried out in the GSE41613 cohort. Immunity analysis based on NRGs was performed via several methods, such as CIBERSORT, and immunotherapy response was evaluated by TIP portal website. Results: With the TCGA-HNSCC data, we established a nomogram based on the 17-NRGs signature and a variety of clinicopathological characteristics. The low-risk group exhibited a better effect when it came to immunotherapy. Conclusions: 17-NRGs signature and nomograms demonstrate excellent predictive performance and offer new perspectives for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology research.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Prognóstico , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Células Matadoras Naturais , Nomogramas
18.
Genes (Basel) ; 13(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36292695

RESUMO

Gliomas that are classified as grade II or grade III lesions by the World Health Organization (WHO) are highly aggressive, and some may develop into glioblastomas within a short period, thus portending the conferral of a poor prognosis for patients. Previous studies have implicated basement membrane (BM)-related genes in glioma development. In this study, we constructed a prognostic model for WHO grade II/III gliomas in accordance with the risk scores of BM-related genes. Differentially expressed genes (DEGs) in the glioma samples relative to normal samples were screened from the GEO database, and five prognostically relevant BM-related genes, including NELL2, UNC5A, TNC, CSPG4, and SMOC1, were selected using Cox regression analyses for the risk score model. The median risk score was calculated, based on which high- and low-risk groups of patients were generated. The clinical information, pathological information, and risk group were combined to establish a prognostic nomogram. Both the nomogram and risk score model performed well in the independent CGGA cohort. Gene set enrichment analysis (GSEA) and immune profile, drug sensitivity, and tumor mutation burden (TMB) analyses were performed in the two risk groups. A significant enrichment of 'Autophagy-other', 'Collecting duct acid secretion', 'Glycosphingolipid biosynthesis-lacto and neolacto series', 'Valine, leucine, and isoleucine degradation', 'Vibrio cholerae infection', and other pathways were observed for patients with high risk. In addition, higher proportions of monocytes and resting CD4 memory T cells were observed in the low- and high-risk groups, respectively. In conclusion, the BM-related gene risk score model can guide the clinical management of WHO grade II and III gliomas.


Assuntos
Glioma , Isoleucina , Humanos , Leucina , Glioma/genética , Glioma/patologia , Prognóstico , Organização Mundial da Saúde , Membrana Basal/patologia , Valina , Glicoesfingolipídeos
19.
Genes (Basel) ; 13(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140771

RESUMO

Although many biomarkers associated with coronavirus disease 2019 (COVID-19) were found, a novel signature relevant to immune cells has not been developed. In this work, the "CIBERSORT" algorithm was used to assess the fraction of immune infiltrating cells in GSE152641 and GSE171110. Key modules associated with important immune cells were selected by the "WGCNA" package. The "GO" enrichment analysis was used to reveal the biological function associated with COVID-19. The "Boruta" algorithm was used to screen candidate genes, and the "LASSO" algorithm was used for collinearity reduction. A novel gene signature was developed based on multivariate logistic regression analysis. Subsequently, M0 macrophages (PRAUC = 0.948 in GSE152641 and PRAUC = 0.981 in GSE171110) and neutrophils (PRAUC = 0.892 in GSE152641 and PRAUC = 0.960 in GSE171110) were considered as important immune cells. Forty-three intersected genes from two modules were selected, which mainly participated in some immune-related activities. Finally, a three-gene signature comprising CLEC4D, DUSP13, and UNC5A that can accurately distinguish COVID-19 patients and healthy controls in three datasets was constructed. The ROCAUC was 0.974 in the training set, 0.946 in the internal test set, and 0.709 in the external test set. In conclusion, we constructed a three-gene signature to identify COVID-19, and CLEC4D, DUSP13, and UNC5A may be potential biomarkers for COVID-19 patients.


Assuntos
COVID-19 , Biologia Computacional , COVID-19/genética , Humanos , Aprendizado de Máquina
20.
Artigo em Inglês | MEDLINE | ID: mdl-36011822

RESUMO

(1) Background: Men who have sex with other men (MSMs) are at high risk of being infected by the human immunodeficiency virus (HIV) in western China. Pre-exposure prophylaxis (PrEP) is an efficient way to prevent HIV transmission. However, adherence is the most vital determinant factor affecting PrEP effectiveness. We conducted a study based on the Health Belief Model to explore factors that predict adherence to PrEP among a cohort of 689 MSMs in western China. (2) Methods: We assessed perceived susceptibility, severity, benefits, barriers, self-efficacy, cues to action, and HIV-preventive behavior through a cross-sectional survey. (3) Results: PrEP self-efficacy was directly associated with PrEP behaviors (ß = 0.221, p < 0.001), cues to action were directly associated with PrEP behaviors (ß = 0.112, p < 0.001), perceived benefits were directly associated with PrEP behaviors (ß = 0.101, p < 0.001), and perceived susceptibility was directly associated with PrEP behaviors (ß = 0.117, p = 0.043). (4) Conclusion: Medication self-efficacy, perceived susceptibility, and cue to action structures are predictors of the MSMs' HIV-preventive behavior in western China. These results will provide theoretical plans for promoting PrEP adherence in MSMs.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Profilaxia Pré-Exposição , Fármacos Anti-HIV/uso terapêutico , Estudos Transversais , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Modelo de Crenças de Saúde , Homossexualidade Masculina , Humanos , Análise de Classes Latentes , Masculino , Profilaxia Pré-Exposição/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA