Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683582

RESUMO

BACKGROUND AND AIMS: HCC, particularly the multifocal HCC, features aggressive invasion and dismal prognosis. Locoregional treatments were often refractory to eliminate tumor tissue, resulting in residual tumor cells persisting and subsequent progression. Owing to problematic delivery to the tumor tissue, systemic therapies, such as lenvatinib (LEN) therapy, show limited clinical benefit in preventing residual tumor progression. Therefore, more advanced strategies for postablative multifocal HCC are urgently needed. APPROACH AND RESULTS: Motivated by the chemotaxis in tumor penetration of macrophages, we report a strategy named microinvasive ablation-guided macrophage hitchhiking for the targeted therapy toward HCC. In this study, the strategy leverages the natural inflammatory gradient induced by ablation to guide LEN-loaded macrophages toward tumor targeting, which increased by ~10-fold the delivery efficiency of LEN in postablative HCC in vivo. Microinvasive ablation-guided macrophage hitchhiking has demonstrated significant antitumor activity in various HCC models, including the hydrodynamic tail vein injection multifocal HCC mouse model and the orthotopic xenograft HCC rabbit model, systematically inhibiting residual tumor progression after ablation and prolonging the median survival of tumor-bearing mice. The potential antitumor mechanism was explored using techniques such as flow cytometry, ELISA, and immunohistochemistry. We found that the strategy significantly suppressed tumor cell proliferation and neovascularization, and such enhanced delivery of LEN stimulated systemic immune responses and induced durable immune memory. CONCLUSIONS: The macrophage hitchhiking strategy demonstrates exceptional therapeutic efficacy and biosafety across various species, offering promising prospects for clinical translation in controlling residual tumor progression and improving outcomes following HCC ablation.

3.
Cytokine ; 169: 156271, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331095

RESUMO

Biliary tract cancer (BTC) is a highly malignant tumor that originates from bile duct epithelium and is categorized into intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA), distal cholangiocarcinoma (dCCA) and gallbladder cancer (GBC) according to the anatomic location. Inflammatory cytokines generated by chronic infection led to an inflammatory microenvironment which influences the carcinogenesis of BTC. Interleukin-6 (IL-6), a multifunctional cytokine secreted by kupffer cells, tumor-associated macrophages, cancer-associated fibroblasts (CAFs) and cancer cells, plays a central role in tumorigenesis, angiogenesis, proliferation, and metastasis in BTC. Besides, IL-6 serves as a clinical biomarker for diagnosis, prognosis, and monitoring for BTC. Moreover, preclinical evidence indicates that IL-6 antibodies could sensitize tumor immune checkpoint inhibitors (ICIs) by altering the number of infiltrating immune cells and regulating the expression of immune checkpoints in the tumor microenvironment (TME). Recently, IL-6 has been shown to induce programmed death ligand 1 (PD-L1) expression through the mTOR pathway in iCCA. However, the evidence is insufficient to conclude that IL-6 antibodies could boost the immune responses and potentially overcome the resistance to ICIs for BTC. Here, we systematically review the central role of IL-6 in BTC and summarize the potential mechanisms underlying the improved efficacy of treatments combining IL-6 antibodies with ICIs in tumors. Given this, a future direction is proposed for BTC to increase ICIs sensitivity by blocking IL-6 pathways.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Colangiocarcinoma , Humanos , Interleucina-6 , Neoplasias do Sistema Biliar/patologia , Neoplasias do Sistema Biliar/terapia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Citocinas , Anticorpos , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Microambiente Tumoral
5.
Cell Death Dis ; 14(3): 221, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977668

RESUMO

The aim of the present study was to clarify the mechanism of how METTL3 regulated pancreatic ductal adenocarcinoma (PDAC) progression by m6A modification of its downstream target mRNA and signaling pathway. Immunoblotting and qRT-PCR assays was employed to determine the expression levels of METTL3. In situ fluorescence hybridization was conducted to localize the cellular distribution of METTL3 and DEAD-box helicase 23 (DDX23). CCK8, colony formation, EDU incorporation, TUNEL, wound healing and Transwell assays were carried out accordingly to study the viability, proliferation, apoptosis, and mobility of cells under different treatments in vitro. Xenograft and animal lung metastasis experiments were also conducted to study the functional role of METTL3 or DDX23 on tumor growth and lung metastasis in vivo. MeRIP-qPCR and bioinformatical analyses were used to obtain the potential direct targets of METTL3. It was shown that m6A methyltransferase METTL3 was upregulated in PDAC tissues with gemcitabine resistance, and its knockdown sensitized pancreatic cancer cells to chemotherapy. Furthermore, silencing METTL3 remarkably reduced pancreatic cancer cell proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, validation experiments confirmed that DDX23 mRNA was a direct target of METTL3 in YTHDF1-dependent manner. Additionally, DDX23 silence resulted in the suppression of pancreatic cancer cell malignancy and PIAK/Akt signaling inactivation. Strikingly, rescuse experiments demonstrated the inhibitive effects of METTL3 silence on cell phenotypes and gemcitabine resistance were partially reversed by forcibly expressed DDX23. In summary, METTL3 promotes PDAC progression and gemcitabine resistance by modifying DDX23 mRNA m6A methylation and enhancing PI3K/Akt signaling activation. Our findings establish a potential tumor promotive and chemo-resistant role for METTL3/DDX23 axis in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pulmonares , Neoplasias Pancreáticas , Animais , Humanos , Gencitabina , Metilação , Adenosina/farmacologia , Adenosina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Neoplasias Pancreáticas
6.
Biol Direct ; 17(1): 33, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397058

RESUMO

BACKGROUND: Pancreatic cancer (PC) is highly malignant. Chemotherapy is the main treatment strategy, especially for patients with advanced PC. However, chemoresistance has always been a frequently encountered bottleneck. Hence, there is an urgent need to enhance the sensitivity of PC to gemcitabine (GEM). RESULTS: We demonstrated that SH3BP5-AS1 was significantly upregulated in GEM-resistant PC and predicted a poorer prognosis. SH3BP5-AS1 stability was regulated by ALKBH5/IGF2BP1-mediated m6A modification. Loss of SH3BP5-AS1 reduced PC cell migration and invasion and enhanced the sensitivity of PC to GEM, as confirmed by gain- and loss-of-function assays in vitro and in vivo. Bioinformatics analysis revealed that SH3BP5-AS1 acted as a ceRNA against miR-139-5p and directly targeted CTBP1, affecting the biological behavior of PC cells. The mechanistic studies revealed that the upregulation of SH3BP5-AS1 increased CTBP1 expression by directly activating the Wnt signaling pathway, promoting GEM resistance. CONCLUSIONS: This study revealed that SH3BP5-AS1 activated Wnt signaling pathway by sponging miR-139-5p, upregulating CTBP1 expression, and contributing to the sensitivity of PC cells to GEM. SH3BP5-AS1 might be a potential target for PC therapy.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Via de Sinalização Wnt/genética , Regulação para Cima , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Gencitabina , Neoplasias Pancreáticas
7.
Cell Death Discov ; 8(1): 449, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344496

RESUMO

Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are deregulated in hepatocellular carcinoma (HCC) and play a role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the current understanding of the role of lncRNAs in NAFLD-associated HCC is limited. In this study, transcriptomic profiling analysis of three paired human liver samples from patients with NAFLD-driven HCC and adjacent samples showed that LINC01468 expression was significantly upregulated. In vitro and in vivo gain- and loss-of-function experiments showed that LINC01468 promotes the proliferation of HCC cells through lipogenesis. Mechanistically, LINC01468 binds SHIP2 and promotes cullin 4 A (CUL4A)-linked ubiquitin degradation, thereby activating the PI3K/AKT/mTOR signaling pathway, resulting in the promotion of de novo lipid biosynthesis and HCC progression. Importantly, the SHIP2 inhibitor reversed the sorafenib resistance induced by LINC01468 overexpression. Moreover, ALKBH5-mediated N6-methyladenosine (m6A) modification led to stabilization and upregulation of LINC01468 RNA. Taken together, the findings indicated a novel mechanism by which LINC01468-mediated lipogenesis promotes HCC progression through CUL4A-linked degradation of SHIP2. LINC01468 acts as a driver of HCC progression from NAFLD, highlights the potential of the LINC01468-SHIP2 axis as a therapeutic target for HCC.

8.
Cell Biosci ; 12(1): 183, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371321

RESUMO

BACKGROUND: Exploiting cancer metabolism during nutrient availability holds immense potential for the clinical and therapeutic benefits of hepatocellular carcinoma (HCC) patients. Dietary methionine is a metabolic dependence of cancer development, but how the signal transduction integrates methionine status to achieve the physiological demand of cancer cells remains unknown. METHODS: Low or high levels of dietary methionine was fed to mouse models with patient-derived xenograft or diethyl-nitrosamine induced liver cancer. RNA sequence and metabolomics were performed to reveal the profound effect of methionine restriction on gene expression and metabolite changes. Immunostaining, sphere formation assays, in vivo tumourigenicity, migration and self-renewal ability were conducted to demonstrate the efficacy of methionine restriction and sorafenib. RESULTS: We discovered that mTORC1-c-Myc-SIRT4 axis was abnormally regulated in a methionine-dependent manner and affected the HCC progression. c-Myc rewires methionine metabolism through TRIM32 mediated degradation of SIRT4, which regulates MAT2A activity by ADP-ribosylation on amino acid residue glutamic acid 111. MAT2A is a key enzyme to generate S-adenosylmethionine (SAM). Loss of SIRT4 activates MAT2A, thereby increasing SAM level and dynamically regulating gene expression, which triggers the high proliferation rate of tumour cells. SIRT4 exerts its tumour suppressive function with targeted therapy (sorafenib) by affecting methionine, redox and nucleotide metabolism. CONCLUSIONS: These findings establish a novel characterization of the signaling transduction and the metabolic consequences of dietary methionine restriction in malignant liver tissue of mice. mTORC1, c-Myc, SIRT4 and ADP ribosylation site of MAT2A are promising clinical and therapeutic targets for the HCC treatment.

9.
Mol Cancer ; 21(1): 174, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056355

RESUMO

BACKGROUND: Chemoresistance is a major factor contributing to the poor prognosis of patients with pancreatic cancer, and cancer stemness is one of the most crucial factors associated with chemoresistance and a very promising direction for cancer treatment. However, the exact molecular mechanisms of cancer stemness have not been completely elucidated. METHODS: m6A-RNA immunoprecipitation and sequencing were used to screen m6A-related mRNAs and lncRNAs. qRT-PCR and FISH were utilized to analyse DDIT4-AS1 expression. Spheroid formation, colony formation, Western blot and flow cytometry assays were performed to analyse the cancer stemness and chemosensitivity of PDAC cells. Xenograft experiments were conducted to analyse the tumour formation ratio and growth in vivo. RNA sequencing, Western blot and bioinformatics analyses were used to identify the downstream pathway of DDIT4-AS1. IP, RIP and RNA pulldown assays were performed to test the interaction between DDIT4-AS1, DDIT4 and UPF1. Patient-derived xenograft (PDX) mouse models were generated to evaluate chemosensitivities to GEM. RESULTS: DDIT4-AS1 was identified as one of the downstream targets of ALKBH5, and recruitment of HuR onto m6A-modified sites is essential for DDIT4-AS1 stabilization. DDIT4-AS1 was upregulated in PDAC and positively correlated with a poor prognosis. DDIT4-AS1 silencing inhibited stemness and enhanced chemosensitivity to GEM (Gemcitabine). Mechanistically, DDIT4-AS1 promoted the phosphorylation of UPF1 by preventing the binding of SMG5 and PP2A to UPF1, which decreased the stability of the DDIT4 mRNA and activated the mTOR pathway. Furthermore, suppression of DDIT4-AS1 in a PDX-derived model enhanced the antitumour effects of GEM on PDAC. CONCLUSIONS: The ALKBH5-mediated m6A modification led to DDIT4-AS1 overexpression in PDAC, and DDIT-AS1 increased cancer stemness and suppressed chemosensitivity to GEM by destabilizing DDIT4 and activating the mTOR pathway. Approaches targeting DDIT4-AS1 and its pathway may be an effective strategy for the treatment of chemoresistance in PDAC.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Neoplasias Pancreáticas , RNA Antissenso/metabolismo , RNA Longo não Codificante , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA Helicases/genética , RNA Longo não Codificante/genética , Serina-Treonina Quinases TOR/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Regulação para Cima , Neoplasias Pancreáticas
10.
Cell Biosci ; 12(1): 125, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941702

RESUMO

BACKGROUND: Alternative splicing (AS) of genes has been found to affect gene stability, and its abnormal regulation can lead to tumorigenesis. CELF2 is a vital splicing factor to participate in mRNA alternative splicing. Its downregulation has been confirmed to promote the occurrence and development of pancreatic cancer (PC). However, the regulatory role and mechanisms in PC has not been elucidated. RESULTS: CELF2 was downregulated in PC tissues, which affected tumor TNM stage and tumor size, and low expression of CELF2 indicated a poor prognosis of PC. In vivo and in vitro experiments showed that abnormal expression of CELF2 affected the stemness, apoptosis, and proliferation of PC cells. Furthmore, we also found that CELF2 was targeted by ALKBH5 for m6A modification, leading to CELF2 degradation by YTHDF2. Bioinformatic analysis of AS model based on the TCGA database indicated that CELF2 could target CD44 to form different spliceosomes, thereby affecting the biological behavior of PC cells. The conversion of CD44s to CD44V is the key to tumorigenesis. Transcriptomic analysis was conducted to reveal the mechanism of CELF2-mediated CD44 AS in PC. We found that CELF2-mediated splicing of CD44 led to changes in the level of endoplasmic reticulum stress, further regulating the endoplasmic reticulum-associated degradation (ERAD) signaling pathway, thereby affecting apoptosis and cell stemness. In addition, ERAD signaling pathway inhibitor, EerI, could effectively reverse the effect of CD44 on tumors. CONCLUSIONS: This study indicates that N6-methyladenosine-mediated CELF2 promotes AS of CD44, affecting the ERAD pathway and regulating the biological behavior of PC cells. CELF2 is expected to be a new target for targeted-drug development.

11.
Front Cell Dev Biol ; 9: 783088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970545

RESUMO

Background: Accumulating evidence indicates that type 2 diabetes mellitus (T2DM) is a risk factor for hepatocellular carcinoma (HCC), and T2DM-associated HCC represents a common type of HCC cases. We herein identify an lncRNA LINC01572 that was aberrantly upregulated in T2DM-related HCC via high-throughput screening. Based on this, the study was undertaken to identify the functional role and mechanism of LINC01572 in HCC progression. Methods: RT-qPCR was used to detect the expressions of LINC01572 in HCC tissues and cell lines. Gain- or loss-of-function assays were applied to evaluate the in vitro and in vivo functional significance of LINC01572 in the HCC cell proliferation, migration, and invasion using corresponding experiments. Bioinformatics, RIP, RNA pull-down, and luciferase reporter assays were performed to explore the regulatory relationship of the LINC01572/miR-195-5p/PFKFB4 signaling axis. Result: In this study, we profiled lncRNAs in HCC tissues and corresponding adjacent tissues from HCC patients with T2DM by RNA sequencing. Our data showed that LINC01572 was aberrantly upregulated in HCC tissues as compared with control, especially in those with concurrent T2DM. The high level of LINC01572 was correlated with advanced tumor stage, increased blood HbA1c level, and shortened survival time. The overexpression of LINC01572 significantly promoted HCC cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT), while the knockdown of LINC01572 had the opposite effects on HCC cells. A mechanistic study revealed that LINC01572-regulated HCC progression via sponging miR-195-5p to increase the level of PFKFB4 and subsequent enhancement of glycolysis and activation of PI3K-AKT signaling. Conclusion: LINC01572 acts as ceRNA of miR-195-5p to restrict its inhibition of PFKFB4, thereby enhancing glycolysis and activates PI3K/AKT signaling to trigger HCC malignancy.

12.
J Exp Clin Cancer Res ; 40(1): 299, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551796

RESUMO

BACKGROUND: Mounting evidence has suggested the essential role of long non-coding RNAs (lncRNAs) in a plethora of malignant tumors, including hepatocellular carcinoma. However, the underlyling mechanisms of lncRNAs remain unidentified in HCC. The present work was aimed to explore the regulatory functions and mechanisms of LncRNA LNCAROD in HCC progression and chemotherapeutic response. METHODS: The expression of LNCAROD in HCC tissues and cell lines were detected by quantitative reverse transcription PCR (qPCR). Cancer cell proliferation, migration, invasion, and chemoresistance were evaluated by cell counting kit 8 (CCK8), colony formation, transwell, and chemosensitivity assays. Methylated RNA immunoprecipitation qRCR (MeRIP-qPCR) was used to determine N6-methyladenosine (m6A) modification level. RNA immunoprecipitation (RIP) and RNA pull down were applied to identify the molecular sponge role of LNCAROD for modulation of miR-145-5p via the competing endogenous RNA (ceRNA) mechanism, as well as the interaction between LNCAROD and serine-and arginine-rich splicing factor 3 (SRSF3). The interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and LNCAROD was also identified by RIP assay. Gain- or-loss-of-function assays were used to identify the function and underlying mechanisms of LNCAROD in HCC. RESULTS: We found that LNCAROD was significantly upregulated and predicted a poorer prognosis in HCC patients. LNCAROD upregulation was maintained by increased m6A methylation-mediated RNA stability. LNCAROD significantly promoted HCC cell proliferation, migration, invasion, and chemoresistance both in vitro and in vivo. Furthermore, mechanistic studies revealed that pyruvate kinase isoform M2 (PKM2)-mediated glycolysis enhancement is critical for the role of LNACROD in HCC. According to bioinformatics prediction and our experimental data, LNCAROD directly binds to SRSF3 to induce PKM switching towards PKM2 and maintains PKM2 levels in HCC by acting as a ceRNA against miR-145-5p. The oncogenic effects of LNCAROD in HCC were more prominent under hypoxia than normoxia due to the upregulation of hypoxia-triggered hypoxia-inducible factor 1α. CONCLUSIONS: In summary, our present study suggests that LNCAROD induces PKM2 upregulation via simultaneously enhancing SRSF3-mediated PKM switching to PKM2 and sponging miR-145-5p to increase PKM2 level, eventually increasing cancer cell aerobic glycolysis to participate in tumor malignancy and chemoresistance, especially under hypoxic microenvironment. This study provides a promising diagnostic marker and therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , RNA Longo não Codificante/genética , Hormônios Tireóideos/genética , Processamento Alternativo , Animais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glicólise , Xenoenxertos , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/genética , Prognóstico , Interferência de RNA , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
13.
J Exp Clin Cancer Res ; 40(1): 45, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33499874

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) has an extremely poor prognosis due to the development of chemoresistance, coupled with inherently increased stemness properties. Long non-coding RNAs (LncRNAs) are key regulators for tumor cell stemness and chemosensitivity. Currently the relevance between LINC00680 and tumor progression was still largely unknown, with only one study showing its significance in glioblastoma. The study herein was aimed at identifying the role of LINC00680 in the regulation HCC stemness and chemosensitivity. METHODS: QRT-PCR was used to detect the expression of LINC00680, miR-568 and AKT3 in tissue specimen and cell lines. Gain- or loss-of function assays were applied to access the function of LINC00680 in HCC cells, including cell proliferation and stemness properties. HCC stemness and chemosensitivity were determined by sphere formation, cell viability and colony formation. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were performed to examine the interaction between LINC00680 and miR-568 as well as that between miR-568 and AKT3. A nude mouse xenograft model was established for the in vivo study. RESULTS: We found that LINC00680 was remarkably upregulated in HCC tissues. Patients with high level of LINC00680 had poorer prognosis. LINC00680 overexpression significantly enhanced HCC cell stemness and decreased in vitro and in vivo chemosensitivity to 5-fluorouracil (5-Fu), whereas LINC00680 knockdown led to opposite results. Mechanism study revealed that LINC00680 regulated HCC stemness and chemosensitivity through sponging miR-568, thereby expediting the expression of AKT3, which further activated its downstream signaling molecules, including mTOR, elF4EBP1, and p70S6K. CONCLUSION: LINC00680 promotes HCC stemness properties and decreases chemosensitivity through sponging miR-568 to activate AKT3, suggesting that LINC00680 might be a potentially important HCC diagnosis marker and therapeutic target.


Assuntos
Carcinoma Hepatocelular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Animais , Biomarcadores Tumorais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Células-Tronco Neoplásicas , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Curva ROC , Transdução de Sinais , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA