Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nucleic Acids Res ; 51(22): 12054-12068, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933851

RESUMO

Confidence in experimental results is critical for discovery. As the scale of data generation in genomics has grown exponentially, experimental error has likely kept pace despite the best efforts of many laboratories. Technical mistakes can and do occur at nearly every stage of a genomics assay (i.e. cell line contamination, reagent swapping, tube mislabelling, etc.) and are often difficult to identify post-execution. However, the DNA sequenced in genomic experiments contains certain markers (e.g. indels) encoded within and can often be ascertained forensically from experimental datasets. We developed the Genotype validation Pipeline (GenoPipe), a suite of heuristic tools that operate together directly on raw and aligned sequencing data from individual high-throughput sequencing experiments to characterize the underlying genome of the source material. We demonstrate how GenoPipe validates and rescues erroneously annotated experiments by identifying unique markers inherent to an organism's genome (i.e. epitope insertions, gene deletions and SNPs).


Assuntos
Genômica , Genótipo , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Conjuntos de Dados como Assunto
2.
bioRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37873361

RESUMO

The DNA-binding activities of transcription factors (TFs) are influenced by both intrinsic sequence preferences and extrinsic interactions with cell-specific chromatin landscapes and other regulatory proteins. Disentangling the roles of these binding determinants remains challenging. For example, the FoxA subfamily of Forkhead domain (Fox) TFs are known pioneer factors that can bind to relatively inaccessible sites during development. Yet FoxA TF binding also varies across cell types, pointing to a combination of intrinsic and extrinsic forces guiding their binding. While other Forkhead domain TFs are often assumed to have pioneering abilities, how sequence and chromatin features influence the binding of related Fox TFs has not been systematically characterized. Here, we present a principled approach to compare the relative contributions of intrinsic DNA sequence preference and cell-specific chromatin environments to a TF's DNA-binding activities. We apply our approach to investigate how a selection of Fox TFs (FoxA1, FoxC1, FoxG1, FoxL2, and FoxP3) vary in their binding specificity. We over-express the selected Fox TFs in mouse embryonic stem cells, which offer a platform to contrast each TF's binding activity within the same preexisting chromatin background. By applying a convolutional neural network to interpret the Fox TF binding patterns, we evaluate how sequence and preexisting chromatin features jointly contribute to induced TF binding. We demonstrate that Fox TFs bind different DNA targets, and drive differential gene expression patterns, even when induced in identical chromatin settings. Despite the association between Forkhead domains and pioneering activities, the selected Fox TFs display a wide range of affinities for preexiting chromatin states. Using sequence and chromatin feature attribution techniques to interpret the neural network predictions, we show that differential sequence preferences combined with differential abilities to engage relatively inaccessible chromatin together explain Fox TF binding patterns at individual sites and genome-wide.

3.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993164

RESUMO

Confidence in experimental results is critical for discovery. As the scale of data generation in genomics has grown exponentially, experimental error has likely kept pace despite the best efforts of many laboratories. Technical mistakes can and do occur at nearly every stage of a genomics assay (i.e., cell line contamination, reagent swapping, tube mislabelling, etc.) and are often difficult to identify post-execution. However, the DNA sequenced in genomic experiments contains certain markers (e.g., indels) encoded within and can often be ascertained forensically from experimental datasets. We developed the Genotype validation Pipeline (GenoPipe), a suite of heuristic tools that operate together directly on raw and aligned sequencing data from individual high-throughput sequencing experiments to characterize the underlying genome of the source material. We demonstrate how GenoPipe validates and rescues erroneously annotated experiments by identifying unique markers inherent to an organism’s genome (i.e., epitope insertions, gene deletions, and SNPs).

4.
Genes Dev ; 36(17-18): 985-1001, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302553

RESUMO

Genome-wide, little is understood about how proteins organize at inducible promoters before and after induction and to what extent inducible and constitutive architectures depend on cofactors. We report that sequence-specific transcription factors and their tethered cofactors (e.g., SAGA [Spt-Ada-Gcn5-acetyltransferase], Mediator, TUP, NuA4, SWI/SNF, and RPD3-L) are generally bound to promoters prior to induction ("poised"), rather than recruited upon induction, whereas induction recruits the preinitiation complex (PIC) to DNA. Through depletion and/or deletion experiments, we show that SAGA does not function at constitutive promoters, although a SAGA-independent Gcn5 acetylates +1 nucleosomes there. When inducible promoters are poised, SAGA catalyzes +1 nucleosome acetylation but not PIC assembly. When induced, SAGA catalyzes acetylation, deubiquitylation, and PIC assembly. Surprisingly, SAGA mediates induction by creating a PIC that allows TFIID (transcription factor II-D) to stably associate, rather than creating a completely TFIID-independent PIC, as generally thought. These findings suggest that inducible systems, where present, are integrated with constitutive systems.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fator de Transcrição TFIID , Fator de Transcrição TFIID/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Regiões Promotoras Genéticas/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
5.
Cureus ; 14(6): e25728, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812608

RESUMO

Gamma-hydroxybutyrate (GHB) is a sedative often abused for its euphoric and relaxant effects. This case report looks to discuss a case of GHB intoxication in a 57-year-old gentleman, which resulted in an 11-day hospitalization due to withdrawal effects of his GHB dependence. His hospitalization and care primarily followed usual supportive care treatments; however, a novel use of baclofen to further expedite patient sedation reversal was done. This case report looks to explore the management of this patient's GHB toxicity and eventual resolution of symptoms using baclofen.

6.
Cureus ; 14(4): e24291, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35602802

RESUMO

Hypophysitis is the inflammation of the pituitary gland with varying effects on hormone function that may be present secondary to the use of certain medications, infections, systemic inflammatory disorders, and other etiologies. Immunotherapy-related hypophysitis is a rare phenomenon. However, it represents an indication of treatment interruption. We report a 60-year-old female with renal clear cell carcinoma on Nivolumab and Ipilimumab (NIVO/IPI) intravenously (IV). After the second cycle of therapy, the patient reported a fall, with associated lightheadedness, dizziness, nausea, vomiting, and hot flashes. The patient's symptoms and history were concerning for hypophysitis, so early treatment and cessation of the checkpoint inhibitors led to the patient's clinical improvement.

7.
Genome Res ; 32(5): 878-892, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483960

RESUMO

When detected at single-base-pair resolution, the genome-wide location, occupancy level, and structural organization of DNA-binding proteins provide mechanistic insights into genome regulation. Here we use ChIP-exo to provide a near-base-pair resolution view of the epigenomic organization of the Escherichia coli transcription machinery and nucleoid structural proteins at the time when cells are growing exponentially and upon rapid reprogramming (acute heat shock). We examined the site specificity of three sigma factors (RpoD/σ70, RpoH/σ32, and RpoN/σ54), RNA polymerase (RNAP or RpoA, -B, -C), and two nucleoid proteins (Fis and IHF). We suggest that DNA shape at the flanks of cognate motifs helps drive site specificity. We find that although RNAP and sigma factors occupy active cognate promoters, RpoH and RpoN can occupy quiescent promoters without the presence of RNAP. Thus, promoter-bound sigma factors can be triggered to recruit RNAP by a mechanism that is distinct from an obligatory cycle of free sigma binding RNAP followed by promoter binding. These findings add new dimensions to how sigma factors achieve promoter specificity through DNA sequence and shape, and further define mechanistic steps in regulated genome-wide assembly of RNAP at promoters in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regiões Promotoras Genéticas , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica
8.
Genome Biol ; 23(1): 99, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440038

RESUMO

Reproducibility is a significant challenge in (epi)genomic research due to the complexity of experiments composed of traditional biochemistry and informatics. Recent advances have exacerbated this as high-throughput sequencing data is generated at an unprecedented pace. Here, we report the development of a Platform for Epi-Genomic Research (PEGR), a web-based project management platform that tracks and quality controls experiments from conception to publication-ready figures, compatible with multiple assays and bioinformatic pipelines. It supports rigor and reproducibility for biochemists working at the bench, while fully supporting reproducibility and reliability for bioinformaticians through integration with the Galaxy platform.


Assuntos
Epigenômica , Genômica , Biologia Computacional , Genoma , Reprodutibilidade dos Testes , Software
9.
PLoS Comput Biol ; 18(2): e1009859, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35139076

RESUMO

The ability to aggregate experimental data analysis and results into a concise and interpretable format is a key step in evaluating the success of an experiment. This critical step determines baselines for reproducibility and is a key requirement for data dissemination. However, in practice it can be difficult to consolidate data analyses that encapsulates the broad range of datatypes available in the life sciences. We present STENCIL, a web templating engine designed to organize, visualize, and enable the sharing of interactive data visualizations. STENCIL leverages a flexible web framework for creating templates to render highly customizable visual front ends. This flexibility enables researchers to render small or large sets of experimental outcomes, producing high-quality downloadable and editable figures that retain their original relationship to the source data. REST API based back ends provide programmatic data access and supports easy data sharing. STENCIL is a lightweight tool that can stream data from Galaxy, a popular bioinformatic analysis web platform. STENCIL has been used to support the analysis and dissemination of two large scale genomic projects containing the complete data analysis for over 2,400 distinct datasets. Code and implementation details are available on GitHub: https://github.com/CEGRcode/stencil.


Assuntos
Genômica , Software , Biologia Computacional , Genômica/métodos , Disseminação de Informação , Internet , Reprodutibilidade dos Testes
10.
Elife ; 102021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652274

RESUMO

In Saccharomyces cerevisiae, RNA polymerase II (Pol II) selects transcription start sites (TSSs) by a unidirectional scanning process. During scanning, a preinitiation complex (PIC) assembled at an upstream core promoter initiates at select positions within a window ~40-120 bp downstream. Several lines of evidence indicate that Ssl2, the yeast homolog of XPB and an essential and conserved subunit of the general transcription factor (GTF) TFIIH, drives scanning through its DNA-dependent ATPase activity, therefore potentially controlling both scanning rate and scanning extent (processivity). To address questions of how Ssl2 functions in promoter scanning and interacts with other initiation activities, we leveraged distinct initiation-sensitive reporters to identify novel ssl2 alleles. These ssl2 alleles, many of which alter residues conserved from yeast to human, confer either upstream or downstream TSS shifts at the model promoter ADH1 and genome-wide. Specifically, tested ssl2 alleles alter TSS selection by increasing or narrowing the distribution of TSSs used at individual promoters. Genetic interactions of ssl2 alleles with other initiation factors are consistent with ssl2 allele classes functioning through increasing or decreasing scanning processivity but not necessarily scanning rate. These alleles underpin a residue interaction network that likely modulates Ssl2 activity and TFIIH function in promoter scanning. We propose that the outcome of promoter scanning is determined by two functional networks, the first being Pol II activity and factors that modulate it to determine initiation efficiency within a scanning window, and the second being Ssl2/TFIIH and factors that modulate scanning processivity to determine the width of the scanning widow.


In eukaryotic organisms such as yeast, the process of converting genes into proteins begins with the transcription of DNA sequences into mRNA molecules. An enzyme called RNA Polymerase II (Pol II) is responsible for creating new strands of mRNA, but a variety of other so called transcription factors is also needed to kickstart the transcription process. These transcription factors are delivered to genes, where they attach to specific sequences, or promoters, which sit at the beginning of each gene. Once these transcription factors are in place, the double stranded DNA is unzipped to provide access to the DNA that will serve as the template for transcription. In budding yeast, Pol II and another specific transcription factor, known as TFIIH, work together to scan these promoter sequences to find the appropriate start sites of mRNA synthesis. However, several aspects of this process, such as how TFIIH works in promoter scanning, how far its scanning functions can extend, and how its activity is controlled, are currently poorly understood. Zhao et al. have investigated these questions in budding yeast. Using a range of genetic and genomic techniques, Zhao et al. found that certain sections of TFIIH were involved in choosing specific transcription start sites of mRNA synthesis during promoter scanning. These sections were identical in different eukaryotic organisms from yeast to humans, suggesting that these regions may be important for tuning or controlling the activity of TFIIH. Moreover, in yeast, the activity of TFIIH determines how far the scanning unit was able to move along the promoter DNA. Finally, Zhao et al. found that the initiation by promoter scanning was regulated by two distinct networks. The first network controlled how well mRNA synthesis could be initiated at individual transcription start sites; and the second network ­ driven by TFIIH ­ controlled which promoter sequences could be scanned to initiate transcription. This research provides an in-depth look into the early steps of the process of converting DNA into mRNA. The biological machinery used to initiate and control this action is highly conserved between yeast and humans, suggesting that the mechanisms for controlling the activity of these factors could be similar, even if their initiation processes may differ.


Assuntos
DNA Helicases/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIH/genética , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , DNA Helicases/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/metabolismo
11.
Genome Res ; 31(9): 1663-1679, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426512

RESUMO

Antibodies offer a powerful means to interrogate specific proteins in a complex milieu. However, antibody availability and reliability can be problematic, whereas epitope tagging can be impractical in many cases. To address these limitations, the Protein Capture Reagents Program (PCRP) generated over a thousand renewable monoclonal antibodies (mAbs) against human presumptive chromatin proteins. However, these reagents have not been widely field-tested. We therefore performed a screen to test their ability to enrich genomic regions via chromatin immunoprecipitation (ChIP) and a variety of orthogonal assays. Eight hundred eighty-seven unique antibodies against 681 unique human transcription factors (TFs) were assayed by ultra-high-resolution ChIP-exo/seq, generating approximately 1200 ChIP-exo data sets, primarily in a single pass in one cell type (K562). Subsets of PCRP mAbs were further tested in ChIP-seq, CUT&RUN, STORM super-resolution microscopy, immunoblots, and protein binding microarray (PBM) experiments. About 5% of the tested antibodies displayed high-confidence target (i.e., cognate antigen) enrichment across at least one assay and are strong candidates for additional validation. An additional 34% produced ChIP-exo data that were distinct from background and thus warrant further testing. The remaining 61% were not substantially different from background, and likely require consideration of a much broader survey of cell types and/or assay optimizations. We show and discuss the metrics and challenges to antibody validation in chromatin-based assays.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Fatores de Transcrição , Sítios de Ligação , Imunoprecipitação da Cromatina , Humanos , Indicadores e Reagentes , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
12.
PLoS One ; 16(7): e0255005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34320018

RESUMO

BACKGROUND: Pulmonary complications such as pneumonia, pulmonary atelectasis, and subsequent respiratory failure leading to ventilatory support are a common occurrence in critically ill patients. Intrapulmonary percussive ventilation (IPV) is used to improve gas exchange and promote airway clearance in these patients. The current evidence regarding the effectiveness of intrapulmonary percussive ventilation in critical care settings remains unclear. This systematic review aims to summarise the evidence of the effectiveness of intrapulmonary percussive ventilation on intensive care unit length of stay (ICU-LOS) and respiratory outcomes in critically ill patients. RESEARCH QUESTION: In critically ill patients, is intrapulmonary percussive ventilation effective in improving respiratory outcomes and reducing intensive care unit length of stay. METHODS: A systematic search of intrapulmonary percussive ventilation in intensive care unit (ICU) was performed on five databases from 1979 to 2021. Studies were considered for inclusion if they evaluated the effectiveness of IPV in patients aged ≥16 years receiving invasive or non-invasive ventilation or breathing spontaneously in critical care or high dependency units. Study titles and abstracts were screened, followed by data extraction by a full-text review. Due to a small number of studies and observed heterogeneities in the study methodology and patient population, a meta-analysis could not be included in this review. Outcomes of interest were summarised narratively. RESULTS: Out of 306 identified abstracts, seven studies (630 patients) met the eligibility criteria. Results of the included studies provide weak evidence to support the effectiveness of intrapulmonary percussive ventilation in reducing ICU-LOS, improving gas exchange, and reducing respiratory rate. INTERPRETATION: Based on the findings of this review, the evidence to support the role of IPV in reducing ICU-LOS, improving gas exchange, and reducing respiratory rate is weak. The therapeutic value of IPV in airway clearance, preventing pneumonia, and treating pulmonary atelectasis requires further investigation.


Assuntos
Estado Terminal/terapia , Pneumonia/epidemiologia , Troca Gasosa Pulmonar , Respiração Artificial , Bases de Dados Factuais , Humanos , Unidades de Terapia Intensiva , Tempo de Internação , Pneumonia/patologia , Respiração Artificial/efeitos adversos , Taxa Respiratória , Resultado do Tratamento
13.
J Intensive Care Soc ; 22(2): 111-119, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025750

RESUMO

BACKGROUND: Intrapulmonary percussive ventilation is used in various clinical settings to promote secretion clearance, reverse or treat atelectasis and improve gas exchange. Despite a few studies reporting the use of intrapulmonary percussive ventilation in critical care, the available data remain insufficient, contributing to weaker evidence toward its effectiveness. Also, there is a paucity of studies evaluating the safety and feasibility of intrapulmonary percussive ventilation application in critical care. This retrospective pilot study has evaluated the safety and feasibility of intrapulmonary percussive ventilation intervention in non-intubated patients admitted to an intensive care unit. METHODS: The medical records of 35 subjects were reviewed, including 22 subjects who received intrapulmonary percussive ventilation intervention and 13 subjects matched for age, sex, and primary diagnosis who received chest physiotherapy. The records were audited for feasibility, safety, changes in oxygen saturation, chest X-ray changes, and intensive care unit length of stay. RESULTS: A total of 104 treatment sessions (IPV 65 and CPT 39) were delivered to subjects admitted with a range of respiratory conditions in critical care. Subjects completed 97% of IPV sessions. No major adverse events were reported with intrapulmonary percussive ventilation intervention. Intensive care unit length of stay in the intrapulmonary percussive ventilation group was 9.6 ± 6 days, and in the CPT group, it was 11 ± 9 days (p = 0.59). Peripheral oxygen saturation pre to post intervention was 92% ± 4 to 96% ± 4 in IPV group and 95% ± 4 to 95% ± 3 in the CPT group. CONCLUSION: Application of intrapulmonary percussive ventilation intervention was feasible and safe in non-ventilated adult patients in critical care.

14.
Nature ; 592(7853): 309-314, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33692541

RESUMO

The genome-wide architecture of chromatin-associated proteins that maintains chromosome integrity and gene regulation is not well defined. Here we use chromatin immunoprecipitation, exonuclease digestion and DNA sequencing (ChIP-exo/seq)1,2 to define this architecture in Saccharomyces cerevisiae. We identify 21 meta-assemblages consisting of roughly 400 different proteins that are related to DNA replication, centromeres, subtelomeres, transposons and transcription by RNA polymerase (Pol) I, II and III. Replication proteins engulf a nucleosome, centromeres lack a nucleosome, and repressive proteins encompass three nucleosomes at subtelomeric X-elements. We find that most promoters associated with Pol II evolved to lack a regulatory region, having only a core promoter. These constitutive promoters comprise a short nucleosome-free region (NFR) adjacent to a +1 nucleosome, which together bind the transcription-initiation factor TFIID to form a preinitiation complex. Positioned insulators protect core promoters from upstream events. A small fraction of promoters evolved an architecture for inducibility, whereby sequence-specific transcription factors (ssTFs) create a nucleosome-depleted region (NDR) that is distinct from an NFR. We describe structural interactions among ssTFs, their cognate cofactors and the genome. These interactions include the nucleosomal and transcriptional regulators RPD3-L, SAGA, NuA4, Tup1, Mediator and SWI-SNF. Surprisingly, we do not detect interactions between ssTFs and TFIID, suggesting that such interactions do not stably occur. Our model for gene induction involves ssTFs, cofactors and general factors such as TBP and TFIIB, but not TFIID. By contrast, constitutive transcription involves TFIID but not ssTFs engaged with their cofactors. From this, we define a highly integrated network of gene regulation by ssTFs.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Coenzimas/metabolismo , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIID , Fatores de Transcrição/metabolismo
15.
Cell Rep ; 34(3): 108640, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472084

RESUMO

In multicellular eukaryotes, RNA polymerase (Pol) II pauses transcription ~30-50 bp after initiation. While the budding yeast Saccharomyces has its transcription mechanisms mostly conserved with other eukaryotes, it appears to lack this fundamental promoter-proximal pausing. However, we now report that nearly all yeast genes, including constitutive and inducible genes, manifest two distinct transcriptional stall sites that are brought on by acute environmental signaling (e.g., peroxide stress). Pol II first stalls at the pre-initiation stage before promoter clearance, but after DNA melting and factor acquisition, and may involve inhibited dephosphorylation. The second stall occurs at the +2 nucleosome. It acquires most, but not all, elongation factor interactions. Its regulation may include Bur1/Spt4/5. Our results suggest that a double Pol II stall is a mechanism to downregulate essentially all genes in concert.


Assuntos
RNA Polimerase II/metabolismo , Saccharomyces/genética , Estresse Fisiológico/genética
16.
Genome Biol ; 21(1): 132, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487207

RESUMO

BACKGROUND: The majority of eukaryotic promoters utilize multiple transcription start sites (TSSs). How multiple TSSs are specified at individual promoters across eukaryotes is not understood for most species. In Saccharomyces cerevisiae, a pre-initiation complex (PIC) comprised of Pol II and conserved general transcription factors (GTFs) assembles and opens DNA upstream of TSSs. Evidence from model promoters indicates that the PIC scans from upstream to downstream to identify TSSs. Prior results suggest that TSS distributions at promoters where scanning occurs shift in a polar fashion upon alteration in Pol II catalytic activity or GTF function. RESULTS: To determine the extent of promoter scanning across promoter classes in S. cerevisiae, we perturb Pol II catalytic activity and GTF function and analyze their effects on TSS usage genome-wide. We find that alterations to Pol II, TFIIB, or TFIIF function widely alter the initiation landscape consistent with promoter scanning operating at all yeast promoters, regardless of promoter class. Promoter architecture, however, can determine the extent of promoter sensitivity to altered Pol II activity in ways that are predicted by a scanning model. CONCLUSIONS: Our observations coupled with previous data validate key predictions of the scanning model for Pol II initiation in yeast, which we term the shooting gallery. In this model, Pol II catalytic activity and the rate and processivity of Pol II scanning together with promoter sequence determine the distribution of TSSs and their usage.


Assuntos
DNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores Genéricos de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , Modelos Genéticos , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética
17.
PEARC20 (2020) ; 2020: 285-292, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35662897

RESUMO

There has been a rapid development in genome sequencing, including high-throughput next generation sequencing (NGS) technologies, automation in biological experiments, new bioinformatics tools and utilization of high-performance computing and cloud computing. ChIP-based NGS technologies, e.g. ChIP-seq and ChIP-exo, are widely used to detect the binding sites of DNA-interacting proteins in the genome and help us to have a deeper mechanistic understanding of genomic regulation. As sequencing data is generated at an unprecedented pace from the ChIP-based NGS pipelines, there is an urgent need for a metadata management system. To meet this need, we developed the Platform for Eukaryotic Genomic Regulation (PEGR), a web service platform that logs metadata for samples and sequencing experiments, manages the data processing workflows, and provides reporting and visualization. PEGR links together people, samples, protocols, DNA sequencers and bioinformatics computation. With the help of PEGR, scientists can have a more integrated understanding of the sequencing data and better understand the scientific mechanisms of genomic regulation. In this paper, we present the architecture and the major functionalities of PEGR. We also share our experience in developing this application and discuss the future directions.

20.
Bioinformatics ; 35(6): 903-913, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30165373

RESUMO

MOTIVATION: Regulatory proteins associate with the genome either by directly binding cognate DNA motifs or via protein-protein interactions with other regulators. Each recruitment mechanism may be associated with distinct motifs and may also result in distinct characteristic patterns in high-resolution protein-DNA binding assays. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5' → 3' exonuclease digestion. Since different regulatory complexes will result in different protein-DNA crosslinking signatures, analysis of ChIP-exo tag enrichment patterns should enable detection of multiple protein-DNA binding modes for a given regulatory protein. However, current ChIP-exo analysis methods either treat all binding events as being of a uniform type or rely on motifs to cluster binding events into subtypes. RESULTS: To systematically detect multiple protein-DNA interaction modes in a single ChIP-exo experiment, we introduce the ChIP-exo mixture model (ChExMix). ChExMix probabilistically models the genomic locations and subtype memberships of binding events using both ChIP-exo tag distribution patterns and DNA motifs. We demonstrate that ChExMix achieves accurate detection and classification of binding event subtypes using in silico mixed ChIP-exo data. We further demonstrate the unique analysis abilities of ChExMix using a collection of ChIP-exo experiments that profile the binding of key transcription factors in MCF-7 cells. In these data, ChExMix identifies possible recruitment mechanisms of FoxA1 and ERα, thus demonstrating that ChExMix can effectively stratify ChIP-exo binding events into biologically meaningful subtypes. AVAILABILITY AND IMPLEMENTATION: ChExMix is available from https://github.com/seqcode/chexmix. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA , Motivos de Nucleotídeos , Ligação Proteica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA