Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 515: 1-6, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906235

RESUMO

In animals undergoing metamorphosis, the appearance of the nervous system is coincidently transformed by the morphogenesis of neurons. Such morphogenic alterations are exemplified in three types of intrinsic neurons in the Drosophila memory center. In contrast to the well-characterized remodeling of γ neurons, the morphogenesis of α/ß and α'/ß' neurons has not been adequately explored. Here, we show that mamo, a BTB-zinc finger transcription factor that acts as a terminal selector for α'/ß' neurons, controls the formation of the correct axonal pattern of α'/ß' neurons. Intriguingly, specific Mamo isoforms are preferentially expressed in α'/ß' neurons to regulate the expression of axon guidance molecule Semaphorin-1a. This action directs proper axon guidance in α'/ß' neurons, which is also crucial for wiring of α'/ß' neurons with downstream neurons. Taken together, our results provide molecular insights into how neurons establish correct axonal patterns in circuitry assembly during adult memory center construction.

2.
Curr Biol ; 32(10): 2341-2348.e3, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35508173

RESUMO

While we think of neurons as having a fixed identity, many show spectacular plasticity.1-10 Metamorphosis drives massive changes in the fly brain;11,12 neurons that persist into adulthood often change in response to the steroid hormone ecdysone.13,14 Besides driving remodeling,11-14 ecdysone signaling can also alter the differentiation status of neurons.7,15 The three sequentially born subtypes of mushroom body (MB) Kenyon cells (γ, followed by α'/ß', and finally α/ß)16 serve as a model of temporal fating.17-21 γ neurons are also used as a model of remodeling during metamorphosis. As γ neurons are the only functional Kenyon cells in the larval brain, they serve the function of all three adult subtypes. Correspondingly, larval γ neurons have a similar morphology to α'/ß' and α/ß neurons-their axons project dorsally and medially. During metamorphosis, γ neurons remodel to form a single medial projection. Both temporal fate changes and defects in remodeling therefore alter γ-neuron morphology in similar ways. Mamo, a broad-complex, tramtrack, and bric-à-brac/poxvirus and zinc finger (BTB/POZ) transcription factor critical for temporal specification of α'/ß' neurons,18,19 was recently described as essential for γ remodeling.22 In a previous study, we noticed a change in the number of adult Kenyon cells expressing γ-specific markers when mamo was manipulated.18 These data implied a role for Mamo in γ-neuron fate specification, yet mamo is not expressed in γ neurons until pupariation,18,22 well past γ specification. This indicates that mamo has a later role in ensuring that γ neurons express the correct Kenyon cell subtype-specific genes in the adult brain.


Assuntos
Ecdisona , Corpos Pedunculados , Animais , Axônios , Diferenciação Celular , Larva , Corpos Pedunculados/fisiologia , Neurônios/fisiologia
3.
Sci Rep ; 10(1): 5132, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198477

RESUMO

The transforming growth factor ß (TGF-ß) signaling pathway is evolutionarily conserved and widely used in the animal kingdom to regulate diverse developmental processes. Prior studies have shown that Baboon (Babo), a Drosophila type I TGF-ß receptor, plays essential roles in brain development and neural circuit formation. However, the expression pattern for Babo in the developing brain has not been previously reported. We generated a knock-in fly with a human influenza hemagglutinin (HA) tag at the C-terminus of Babo and assessed its localization. Babo::HA was primarily expressed in brain structures enriched with neurites, including the mushroom body lobe and neuropils of the optic lobe, where Babo has been shown to instruct neuronal morphogenesis. Since the babo 3' untranslated region contains a predicted microRNA-34 (miR-34) target sequence, we further tested whether Babo::HA expression was affected by modulating the level of miR-34. We found that Babo was upregulated by mir-34 deletion and downregulated by miR-34 overexpression, confirming that it is indeed a miR-34 target gene. Taken together, our results demonstrate that the baboHA fly permits accurate visualization of endogenous Babo expression during brain development and the construction of functional neural circuits.


Assuntos
Receptores de Ativinas/genética , Encéfalo/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , MicroRNAs/genética , Ativinas/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Proteínas de Transporte/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Técnicas de Introdução de Genes , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Corpos Pedunculados/crescimento & desenvolvimento , Neuritos/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo
4.
Sci Rep ; 6: 39141, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008974

RESUMO

MicroRNA-34 (miR-34) is crucial for preventing chronic large-scale neurite degeneration in the aged brain of Drosophila melanogaster. Here we investigated the role of miR-34 in two other types of large-scale axon degeneration in Drosophila: axotomy-induced axon degeneration in olfactory sensory neurons (OSNs) and developmentally related axon pruning in mushroom body (MB) neurons. Ectopically overexpressed miR-34 did not inhibit axon degeneration in OSNs following axotomy, whereas ectopically overexpressed miR-34 in differentiated MB neurons impaired γ axon pruning. Intriguingly, the miR-34-induced γ axon pruning defect resulted from downregulating the expression of ecdysone receptor B1 (EcR-B1) in differentiated MB γ neurons. Notably, the separate overexpression of EcR-B1 or a transforming growth factor- ß receptor Baboon, whose activation can upregulate the EcR-B1 expression, in MB neurons rescued the miR-34-induced γ axon pruning phenotype. Future investigations of miR-34 targets that regulate the expression of EcR-B1 in MB γ neurons are warranted to elucidate pathways that regulate axon pruning, and to provide insight into mechanisms that control large-scale axon degeneration in the nervous system.


Assuntos
Regulação para Baixo , Drosophila melanogaster/crescimento & desenvolvimento , MicroRNAs/genética , Corpos Pedunculados/citologia , Receptores de Esteroides/metabolismo , Animais , Axotomia , Diferenciação Celular , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Corpos Pedunculados/crescimento & desenvolvimento , Plasticidade Neuronal , Neurônios Receptores Olfatórios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA