Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(5): 1951-1961, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33559879

RESUMO

Medium perfusion is critical in maintaining high cell concentration in cultures. The conventional membrane filtration method for medium exchange has been challenged by the fouling and clogging of the membrane filters in long-term cultures. In this study, we present a miniature auto-perfusion system that can be operated inside a common-size laboratory incubator. The system is equipped with a spiral microfluidic chip for cell retention to replace conventional membrane filters, which fundamentally overcomes the clogging and fouling problem. We showed that the system supported continuous perfusion culture of Chinese hamster ovary (CHO) cells in suspension up to 14 days without cell retention chip replacement. Compared to daily manual medium change, 25% higher CHO cell concentration can be maintained at an average auto-perfusion rate of 196 ml/day in spinner flask at 70 ml working volume (2.8 VVD). The auto-perfusion system also resulted in better cell quality at high concentrations, in terms of higher viability, more uniform and regular morphology, and fewer aggregates. We also demonstrated the potential application of the system for culturing mesenchymal stem cells on microcarriers. This miniature auto-perfusion system provides an excellent solution to maintain cell-favorable conditions and high cell concentration in small-scale cultures for research and clinical uses.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip , Animais , Células CHO , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Cricetinae , Cricetulus
2.
Biomaterials ; 165: 66-78, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518707

RESUMO

Current clinical approaches for articular cartilage repair have not been able to restore the tissue with zonal architecture, and its biomechanical and functional properties. Mimicking the zonal organization of articular cartilage in neo-tissue by implanting zonal chondrocyte subpopulations in multilayer construct could enhance the functionality of the graft, engineering of stratified tissue has not yet been realized due to lack of efficient and specific zonal chondrocyte isolation protocol. We show that by using a spiral microchannel device, the superficial, middle and deep zone chondrocytes can be separated based on cell size, and enriched from full thickness porcine cartilage in a high-throughput, label-free manner. The size-sorted cells show zone-specific characteristics in RT-PCR analysis of zonal cartilage markers. Both freshly sorted and two-passage expanded zonal chondrocytes formed cartilage tissue in 3D hydrogel, bearing respective zonal characteristics, indicated by RT-PCR, histology, extracellular matrix proteins, and mechanical compression test. In the proof-of-concept in vivo study using a rodent cartilage defect model, the size-sorted zonal chondrocytes when delivered in bi-layered hydrogel construct, facilitated better cartilage repair with mechanically enhanced cartilage tissue, in comparison to conventional chondrocytes implantation. This study provides an effective approach to obtain large numbers of zonal chondrocytes, and demonstrates the translational potential of stratified zonal chondrocyte implantation for clinical repair of critical size cartilage defects.


Assuntos
Cartilagem Articular/fisiologia , Condrócitos , Regeneração , Alicerces Teciduais , Animais , Condrócitos/citologia , Ratos Sprague-Dawley , Engenharia Tecidual
3.
Lab Chip ; 18(6): 878-889, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29459915

RESUMO

Mesenchymal stem cells (MSCs) have been shown as potential candidates for cell-based therapies for a diverse range of tissue regenerative applications. Therapeutic use of MSCs usually requires culture expansion, which increases the heterogeneity of MSCs in vitro, thus affecting the potency of the MSCs for more specific indications. The capacity for identifying and isolating special subsets of MSCs for treatment of specific diseases therefore holds great clinical significance. An important therapeutic application of MSC is for the regeneration of cartilage tissue. We and others have previously developed label-free microfluidic means to isolate subpopulations of culture expanded MSCs based on distinct biophysical characteristics. Here we utilize a spiral micro-channel device to separate culture expanded MSCs into five subgroups according to cell size, and study their proliferation and chondrogenesis at early, middle and late passages. Results show that in all passages, the medium-size subpopulation (cell size of 17-21 µm), compared to other subpopulations, displays significantly higher proliferation rate and chondrogenic capacity in terms of cartilage extracellular matrix formation. Also, the small cell subpopulation (average cell size of 11-12 µm) shows lower viability, and large cell subpopulation (average cell size 23-25 µm) expresses higher level of senescence-associated ß-galactosidase. Finally, we show that repeated microfluidic exclusion of MSCs larger than 21 µm and smaller than 17 µm at every passage during continuous culture expansion result in selected MSCs with faster proliferation and better chondrogenic potential as compared to MSC derived from conventional expansion approach. This study demonstrates the significant merit and utility of size-based cell selection for the application of MSCs in cartilage regeneration.


Assuntos
Técnicas de Cultura de Células , Separação Celular , Condrogênese , Células-Tronco Mesenquimais/citologia , Técnicas Analíticas Microfluídicas , Humanos
4.
Anal Chem ; 88(23): 11750-11757, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27797505

RESUMO

Leukocytes are the essential cells of the immune system that protect the human body against bacteria, viruses, and other foreign invaders. Secretory products of individual leukocytes, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAMs), are critical for regulating the inflammatory response and mediating host defense. Conventional single cell analytical methods, such as flow cytometry for cellular surface biomarker studies, are insufficient for performing functional assays of the protease activity of individual leukocytes. Here, an integrated continuous-flow microfluidic assay is developed to effectively detect secretory protease activity of individual viable leukocytes. Leukocytes in blood are first washed on-chip with defined buffer to remove background activity, followed by encapsulating individual leukocytes with protease sensors in water-in-oil droplets and incubating for 1 h to measure protease secretion. With this design, single leukocyte protease profiles under naive and phorbol 12-myristate 13-acetate (PMA)-stimulated conditions are reliably measured. It is found that PMA treatment not only elevates the average protease activity level but also reduces the cellular heterogeneity in protease secretion, which is important in understanding immune capability and the disease condition of individual patients.


Assuntos
Leucócitos/citologia , Leucócitos/enzimologia , Técnicas Analíticas Microfluídicas , Peptídeo Hidrolases/metabolismo , Análise de Célula Única , Sobrevivência Celular , Difusão , Desenho de Equipamento , Humanos , Software
5.
Sci Rep ; 6: 29643, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27404994

RESUMO

The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network to monitor endothelial cell shear stress levels and directly modulate expression of an atheroprotective transcription factor by shear stress. The technique is highly modular, easily scalable and allows graded control of gene expression by mechanical stimuli in hard-to-transfect mammalian cells. We call this new approach mechanosyngenetics. To insert the gene network into a high proportion of cells, a hybrid transfection procedure was developed that involves electroporation, plasmids replication in mammalian cells, mammalian antibiotic selection, a second electroporation and gene network activation. This procedure takes 1 week and yielded over 60% of cells with a functional gene network. To test gene network functionality, we developed a flow setup that exposes cells to linearly increasing shear stress along the length of the flow channel floor. Activation of the gene network varied logarithmically as a function of shear stress magnitude.


Assuntos
Regulação da Expressão Gênica , Expressão Gênica , Redes Reguladoras de Genes , Mecanotransdução Celular , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/metabolismo , Células HeLa/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Estresse Mecânico , Ativação Transcricional , Transfecção
6.
Eur Spine J ; 25(12): 4008-4015, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26951173

RESUMO

PURPOSE: This study aimed at evaluating our hypothesis that tumour cells, which pass through the intraoperative cell salvage (IOCS) machine, lose viability due to possible injury to the cell membrane during centrifugation and filtration, enabling safe reinfusion even without filtration. METHODS: Thirteen patients who underwent metastatic spine tumour surgery (MSTS) at our institution were recruited. Blood samples (5 ml each) were collected at five different stages during surgery, namely, stage A and B: from patients' vein during induction and at the time of maximum tumour manipulation; stage C, D and E: from the operative blood prior to IOCS processing, after IOCS processing and after IOCS-LDF (leucocyte depletion filter) processing, respectively. The samples were then analysed for viability of tumour cells using microwell-based culture. RESULTS: The median age of the patients was 65 years (range 37-77 years). The most common primary tumour was lung, followed by breast, hepatocellular and renal cell carcinoma. The median blood loss was 680 ml (range 300-1500 ml). Analysis of cultured blood samples showed that CTC-containing clusters were developed from some samples before IOCS-LDF processing (stage A: three patients, stage B: three patients and stage C: one patient). None of the samples from stages D and E generated clusters after culture, suggesting the absence of viable cancer cells after IOCS processing. CONCLUSIONS: The salvaged blood may contain some tumour cells after processing with IOCS machine, but these cells are damaged and hence unable to replicate and unlikely to metastasise. The results of this study support the hypothesis that salvaged blood in MSTS is safe for transfusion.


Assuntos
Separação Celular/métodos , Recuperação de Sangue Operatório/métodos , Neoplasias da Coluna Vertebral/cirurgia , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA