Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 411, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496770

RESUMO

BACKGROUND: The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. RESULTS: A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1-4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. CONCLUSIONS: Our results indicate that in kiwifruit the NAC TFs AcNAC2-4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.


Assuntos
Actinidia/genética , Etilenos/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Actinidia/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Liases/genética , Liases/metabolismo , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
2.
J Agric Food Chem ; 69(3): 966-973, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33434024

RESUMO

2-O-ß-d-Glucopyranosyl l-ascorbic acid (AA-2ßG) is a stable, bioavailable vitamin C (AA) derivative. We report the distribution and seasonal variation of AA-2ßG in apples and its occurrence in other domesticated crops and in wild harvested Ma̅ori foods. Liquid chromatography-mass spectrometry analyses showed high AA-2ßG concentrations in crab apples (Malus sylvestris) but low concentrations in domesticated apples. Leaves of crab and domesticated apple cultivars contained similar intermediate AA-2ßG concentrations. Fruits and leaves of other crops were analyzed: mainly Rosaceae but also Actinidiaceae and Ericaceae. AA-2ßG was detected in all leaves (0.5-6.1 mg/100 g fr. wt.) but was at lower concentrations in most fruits (0.0-0.5 mg/100 g fr. wt.) except for crab apples (79.4 mg/100 g fr. wt.). Ma̅ori foods from Solanaceae, Piperaceae, Asteraceae, and a fern of Aspleniaceae also contained AA-2ßG. This extensive occurrence suggests a general role in AA metabolism for AA-2ßG.


Assuntos
Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Produtos Agrícolas/química , Malus/química , Produtos Agrícolas/metabolismo , Frutas/química , Frutas/metabolismo , Malus/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
3.
BMC Genomics ; 19(1): 257, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661190

RESUMO

BACKGROUND: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. RESULTS: A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. CONCLUSIONS: Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.


Assuntos
Actinidia/genética , Genoma de Planta , Genes de Plantas , Genótipo , Anotação de Sequência Molecular , Proteínas de Plantas/genética
4.
Curr Opin Biotechnol ; 44: 153-160, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28231513

RESUMO

Ascorbate (or vitamin C) is an essential human micronutrient predominantly obtained from plants. In addition to preventing scurvy, it is now known to have broader roles in human health, for example as a cofactor for enzymes involved in epigenetic programming and as regulator of cellular iron uptake. Furthermore, ascorbate is the major antioxidant in plants and underpins many environmentally induced abiotic stress responses. Biotechnological approaches to enhance the ascorbate content of crops therefore have potential to improve both human health and abiotic stress tolerance of crops. Identifying the genetic basis of ascorbate variation between plant varieties and discovering how some 'super fruits' accumulate extremely high levels of ascorbate should reveal new ways to more effectively manipulate the production of ascorbate in crops.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Humanos
5.
New Phytol ; 211(4): 1279-94, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27214242

RESUMO

Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as ß-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and ß-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, ß-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis.


Assuntos
Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/enzimologia , Transferases Intramoleculares/metabolismo , Malus/enzimologia , Triterpenos/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas/genética , Clonagem Molecular , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Malus/genética , Filogenia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Análise de Componente Principal , Alinhamento de Sequência , Análise de Sequência de Proteína , Esqualeno/análogos & derivados , Esqualeno/química , Esqualeno/metabolismo , Nicotiana/genética , Triterpenos/química
6.
J Nutr Biochem ; 27: 181-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26437580

RESUMO

The aim of this study was to provide insight into how curcumin reduces colon inflammation in the Mdr1a(-/-) mouse model of human inflammatory bowel disease using a combined transcriptomics and proteomics approach. Mdr1a(-/-) and FVB control mice were randomly assigned to an AIN-76A (control) diet or AIN-76A+0.2% curcumin. At 21 or 24weeks of age, colonic histological injury score (HIS) was determined, colon mRNA transcript levels were assessed using microarrays and colon protein expression was measured using 2D gel electrophoresis and LCMS protein identification. Colonic HIS of Mdr1a(-/-) mice fed the AIN-76A diet was higher (P<.001) than FVB mice fed the same diet; the curcumin-supplemented diet reduced colonic HIS (P<.05) in Mdr1a(-/-) mice. Microarray and proteomics analyses combined with new data analysis tools, such as the Ingenuity Pathways Analysis regulator effects analysis, showed that curcumin's antiinflammatory activity in Mdr1a(-/-) mouse colon may be mediated by activation of α-catenin, which has not previously been reported. We also show evidence to support curcumin's action via multiple molecular pathways including reduced immune response, increased xenobiotic metabolism, resolution of inflammation through decreased neutrophil migration and increased barrier remodeling. Key transcription factors and other regulatory molecules (ERK, FN1, TNFSF12 and PI3K complex) activated in inflammation were down-regulated by dietary intervention with curcumin.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Colite/prevenção & controle , Curcumina/administração & dosagem , Dieta , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/patologia , Modelos Moleculares , Animais , Camundongos
7.
New Phytol ; 208(4): 1188-201, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26377591

RESUMO

The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis.


Assuntos
Genes de Plantas , Família Multigênica , Peptídeo Hidrolases/metabolismo , Peptídeos/genética , Fenótipo , Proteínas de Plantas/genética , Transcrição Gênica , Trifolium/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Peptídeos/metabolismo , Filogenia , Doenças das Plantas/genética , Folhas de Planta , Proteínas de Plantas/metabolismo , Raízes de Plantas , Interferência de RNA , Transdução de Sinais , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo
8.
Plant Cell ; 27(3): 772-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25724639

RESUMO

Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms.


Assuntos
Arabidopsis/genética , Ácido Ascórbico/biossíntese , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Fases de Leitura Aberta/genética , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Códon/genética , Regulação para Baixo/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Galactose/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Luciferases/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Fosfotransferases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
9.
J Nutr ; 144(2): 146-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24353343

RESUMO

Apples are rich in polyphenols, which provide antioxidant properties, mediation of cellular processes such as inflammation, and modulation of gut microbiota. In this study we compared genetically engineered apples with increased flavonoids [myeloblastis transcription factor 10 (MYB10)] with nontransformed apples from the same genotype, "Royal Gala" (RG), and a control diet with no apple. Compared with the RG diet, the MYB10 diet contained elevated concentrations of the flavonoid subclasses anthocyanins, flavanol monomers (epicatechin) and oligomers (procyanidin B2), and flavonols (quercetin glycosides), but other plant secondary metabolites were largely unaltered. We used these apples to investigate the effects of dietary flavonoids on inflammation and gut microbiota in 2 mouse feeding trials. In trial 1, male mice were fed a control diet or diets supplemented with 20% MYB10 apple flesh and peel (MYB-FP) or RG apple flesh and peel (RG-FP) for 7 d. In trial 2, male mice were fed MYB-FP or RG-FP diets or diets supplemented with 20% MYB10 apple flesh or RG apple flesh for 7 or 21 d. In trial 1, the transcription levels of inflammation-linked genes in mice showed decreases of >2-fold for interleukin-2 receptor (Il2rb), chemokine receptor 2 (Ccr2), chemokine ligand 10 (Cxcl10), and chemokine receptor 10 (Ccr10) at 7 d for the MYB-FP diet compared with the RG-FP diet (P < 0.05). In trial 2, the inflammation marker prostaglandin E(2) (PGE(2)) in the plasma of mice fed the MYB-FP diet at 21 d was reduced by 10-fold (P < 0.01) compared with the RG-FP diet. In colonic microbiota, the number of total bacteria for mice fed the MYB-FP diet was 6% higher than for mice fed the control diet at 21 d (P = 0.01). In summary, high-flavonoid apple was associated with decreases in some inflammation markers and changes in gut microbiota when fed to healthy mice.


Assuntos
Colo/efeitos dos fármacos , Dieta , Flavonoides/uso terapêutico , Alimentos Geneticamente Modificados , Inflamação/prevenção & controle , Malus/química , Microbiota/efeitos dos fármacos , Animais , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Biomarcadores/sangue , Catequina/farmacologia , Catequina/uso terapêutico , Colo/microbiologia , Suplementos Nutricionais , Flavonoides/farmacologia , Frutas/química , Genótipo , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Inflamação/sangue , Inflamação/genética , Mediadores da Inflamação/sangue , Masculino , Malus/genética , Camundongos , Camundongos Endogâmicos , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plantas Geneticamente Modificadas , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Valores de Referência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transformação Genética
10.
J Nutr Biochem ; 24(10): 1678-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23643524

RESUMO

Animal models are an important tool to understand the complex pathogenesis of inflammatory bowel diseases (IBDs). This study tested the anti-inflammatory potential of a green tea extract rich in polyphenols (GrTP) in the colon of the multidrug resistance targeted mutation (Mdr1a(-/-)) mouse model of IBD. Insights into mechanisms responsible for this reduction in inflammation were gained using transcriptome and proteome analyses. Mice were randomly assigned to an AIN-76A (control) or GrTP-enriched diet. At 21 or 24 weeks of age, a colonic histological injury score was determined for each mouse, colon mRNA transcript levels were assessed using microarrays, and colon protein expression was measured using two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry protein identification. Mean colonic histological injury score of GrTP-fed Mdr1a(-/-) mice was significantly lower compared to those fed the control diet. Microarray and proteomics analyses showed reduced abundance of transcripts and proteins associated with immune and inflammatory response and fibrinogenesis pathways, and increased abundance of those associated with xenobiotic metabolism pathways in response to GrTP, suggesting that its anti-inflammatory activity is mediated by multiple molecular pathways. Peroxisome proliferator-activated receptor-α and signal transducer and activator of transcription 1 appear to be two key molecules which regulate these effects. These results support the view that dietary intake of polyphenols derived from green tea can ameliorate intestinal inflammation in the colon of a mouse model of IBD, and are in agreement with studies suggesting that consumption of green tea may reduce IBD symptoms and therefore play a part in an overall IBD treatment regimen.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Colite/prevenção & controle , Colo/metabolismo , Polifenóis/farmacologia , Animais , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Doenças Inflamatórias Intestinais/prevenção & controle , Masculino , Camundongos , Modelos Animais , PPAR alfa/fisiologia , Proteoma , Fator de Transcrição STAT1/fisiologia , Chá/química , Transcriptoma
11.
BMC Med Genomics ; 6: 7, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23497688

RESUMO

BACKGROUND: Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. METHODS: Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. RESULTS: Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. CONCLUSIONS: Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health.


Assuntos
Metilação de DNA , Dieta Hiperlipídica , Ácido Fólico/farmacologia , Perfilação da Expressão Gênica , Proteoma/metabolismo , Selênio/farmacologia , Animais , Animais Recém-Nascidos , Análise por Conglomerados , Ilhas de CpG , Suplementos Nutricionais , Feminino , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Histonas/genética , Histonas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Proteômica , Selênio/análise , Desmame
12.
J Agric Food Chem ; 61(11): 2773-9, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23418665

RESUMO

Three triterpene-caffeates have been isolated from skins of a russeted apple cultivar "Merton Russet" and identified by LC-MS and NMR as betulinic acid-3-cis-caffeate, betulinic acid-3-trans-caffeate, and oleanolic acid-3-trans-caffeate. Betulinic acid-3-trans-caffeate and oleanolic acid-3-trans-caffeate were also found in russeted pear skins. These compounds have not been previously reported in apples or pears, or in any other foods. Their presence was related to suberized tissue as they were only found in russet portions of the partially russeted apple cultivar "Cox's Orange Pippin" and were not detected in the waxy apple cultivar "Royal Gala". High concentrations of betulinic acid-3-trans-caffeate were found in the bark of both "Merton Russet" and "Royal Gala" trees. The three triterpene-caffeates showed anti-inflammatory activity in vitro, inhibiting NF-κB activation with IC50's of 6-9 µM. Betulinic acid-3-trans-caffeate, the predominant compound in the apples, was immuno-modulatory at around 10 µM in the in vitro and ex vivo bioassays, boosting production of the pro-inflammatory cytokine TNFα in cells stimulated with bacterial lipopolysaccharides.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Cafeicos/farmacologia , Frutas/química , Malus/química , Extratos Vegetais/farmacologia , Pyrus/química , Triterpenos/farmacologia , Adulto , Linhagem Celular , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Pessoa de Meia-Idade , NF-kappa B/imunologia
13.
J Agric Food Chem ; 60(42): 10546-54, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23013475

RESUMO

We evaluated the potential of apple to reduce inflammation. Phenolic compounds and triterpenes were analyzed in 109 apple cultivars. Total phenolics ranged from 29 to 7882 µg g(-1) of fresh weight (FW) in the flesh and from 733 to 4868 µg g(-1) FW in the skin, with flavanols including epicatechin and procyanidins as major components. Ursolic (44.7 to 3522 µg g(-1) FW) and oleanolic (47.2 to 838 µg g(-1) FW) acids dominated the skin triterpene profile. Five chemically contrasting cultivars were fractionated and their immune-modulating activity measured using two cell-based assays targeting key points in the inflammation process. Cultivars exhibiting high contents of procyanidins were the most potent at inhibiting NF-κB while triterpene-rich fractions reduced the promoter activity of the gene of TNFα. This study provides new insights into how apple genetic diversity could be used to alleviate inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Malus/química , Proantocianidinas/farmacologia , Triterpenos/farmacologia , Anti-Inflamatórios/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Células HEK293 , Humanos , NF-kappa B/antagonistas & inibidores , Proantocianidinas/isolamento & purificação , Triterpenos/isolamento & purificação , Fator de Necrose Tumoral alfa/genética
14.
Plant Physiol ; 160(3): 1613-29, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23001142

RESUMO

To identify the genetic factors underlying the regulation of fruit vitamin C (L-ascorbic acid [AsA]) concentrations, quantitative trait loci (QTL) studies were carried out in an F1 progeny derived from a cross between the apple (Malus × domestica) cultivars Telamon and Braeburn over three years. QTL were identified for AsA, glutathione, total antioxidant activity in both flesh and skin tissues, and various quality traits, including flesh browning. Four regions on chromosomes 10, 11, 16, and 17 contained stable fruit AsA-QTL clusters. Mapping of AsA metabolic genes identified colocations between orthologs of GDP-L-galactose phosphorylase (GGP), dehydroascorbate reductase (DHAR), and nucleobase-ascorbate transporter within these QTL clusters. Of particular interest are the three paralogs of MdGGP, which all colocated within AsA-QTL clusters. Allelic variants of MdGGP1 and MdGGP3 derived from the cultivar Braeburn parent were also consistently associated with higher fruit total AsA concentrations both within the mapping population (up to 10-fold) and across a range of commercial apple germplasm (up to 6-fold). Striking differences in the expression of the cv Braeburn MdGGP1 allele between fruit from high- and low-AsA genotypes clearly indicate a key role for MdGGP1 in the regulation of fruit AsA concentrations, and this MdGGP allele-specific single-nucleotide polymorphism marker represents an excellent candidate for directed breeding for enhanced fruit AsA concentrations. Interestingly, colocations were also found between MdDHAR3-3 and a stable QTL for browning in the cv Telamon parent, highlighting links between the redox status of the AsA pool and susceptibility to flesh browning.


Assuntos
Alelos , Ácido Ascórbico/metabolismo , Frutas/genética , Malus/enzimologia , Malus/genética , Monoéster Fosfórico Hidrolases/genética , Homologia de Sequência de Aminoácidos , Antioxidantes/metabolismo , Sequência de Bases , Vias Biossintéticas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudos de Associação Genética , Variação Genética , Glutationa/metabolismo , Guanosina Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/química , Folhas de Planta/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
15.
BMC Plant Biol ; 12: 12, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22269060

RESUMO

BACKGROUND: The polyphenolic products of the phenylpropanoid pathway, including proanthocyanidins, anthocyanins and flavonols, possess antioxidant properties that may provide health benefits. To investigate the genetic architecture of control of their biosynthesis in apple fruit, various polyphenolic compounds were quantified in progeny from a 'Royal Gala' × 'Braeburn' apple population segregating for antioxidant content, using ultra high performance liquid chromatography of extracts derived from fruit cortex and skin. RESULTS: Construction of genetic maps for 'Royal Gala' and 'Braeburn' enabled detection of 79 quantitative trait loci (QTL) for content of 17 fruit polyphenolic compounds. Seven QTL clusters were stable across two years of harvest and included QTLs for content of flavanols, flavonols, anthocyanins and hydroxycinnamic acids. Alignment of the parental genetic maps with the apple whole genome sequence in silico enabled screening for co-segregation with the QTLs of a range of candidate genes coding for enzymes in the polyphenolic biosynthetic pathway. This co-location was confirmed by genetic mapping of markers derived from the gene sequences. Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17. CONCLUSION: We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes.


Assuntos
Mapeamento Cromossômico , Frutas/química , Malus/genética , Polifenóis/análise , Locos de Características Quantitativas , Antioxidantes/análise , DNA de Plantas/genética , Genoma de Planta , Malus/química , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
J Proteome Res ; 11(2): 1065-77, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22106967

RESUMO

Inflammatory bowel disease (IBD) is characterized by intestinal inflammation and is believed to involve complex interactions between genetic, immunological, and environmental factors. We measured changes in the proteome associated with bacterially induced intestinal inflammation in the interleukin 10 gene-deficient (Il10(-/-)) mouse model of IBD, established effects of the dietary polyunsaturated fatty acids (PUFAs) n-3 eicosapentaenoic acid (EPA) and n-6 arachidonic acid (AA) on protein expression (using oleic acid as a control fatty acid), and compared these changes with previously observed transcriptome changes in the same model. Ingenuity pathways analysis of proteomics data showed bacterially induced inflammation was associated with reduced expression of proteins from pathways of metabolism and digestion/absorption/excretion of nutrients/ions, and increased expression of cellular stress and immune response proteins. Both PUFA treatments showed anti-inflammatory activity; EPA appeared to act via the PPARα pathway, whereas AA appeared to increase energy metabolism and cytoskeletal organization and reduce cellular stress responses, possibly enabling a more robust response to inflammation. While there was agreement between proteomic and transcriptomic data with respect to pathways, there was limited concordance between individual gene and protein data, reflecting the importance of having both gene and protein data to better understand complex diseases such as IBD.


Assuntos
Colo/efeitos dos fármacos , Colo/metabolismo , Gorduras Insaturadas na Dieta/farmacologia , Interleucina-10/deficiência , Proteoma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Ácido Araquidônico/metabolismo , Análise por Conglomerados , Colo/química , Gorduras Insaturadas na Dieta/metabolismo , Ácido Eicosapentaenoico/metabolismo , Perfilação da Expressão Gênica , Inflamação , Interleucina-10/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Oleico/metabolismo , Proteínas , Proteômica
17.
Plant Biotechnol J ; 10(4): 390-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22129455

RESUMO

Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l-galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP-l-galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops.


Assuntos
Ácido Ascórbico/metabolismo , Vias Biossintéticas/genética , Frutas/metabolismo , Galactose/metabolismo , Guanosina Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/genética , Tubérculos/metabolismo , Actinidia/enzimologia , Sequência de Aminoácidos , Fragaria/genética , Frutas/anatomia & histologia , Frutas/enzimologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Solanum lycopersicum/genética , Dados de Sequência Molecular , Tamanho do Órgão , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/enzimologia , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Solanum tuberosum/genética
18.
Br J Nutr ; 108(1): 113-29, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22152591

RESUMO

Inflammatory bowel disease (IBD) is a collective term for conditions characterised by chronic inflammation of the gastrointestinal tract involving an inappropriate immune response to commensal micro-organisms in a genetically susceptible host. Previously, aqueous and ethyl acetate extracts of gold kiwifruit (Actinidia chinensis) or green kiwifruit (A. deliciosa) have demonstrated anti-inflammatory activity using in vitro models of IBD. The present study examined whether these kiwifruit extracts (KFE) had immune-modulating effects in vivo against inflammatory processes that are known to be increased in patients with IBD. KFE were used as a dietary intervention in IL-10-gene-deficient (Il10(-/-)) mice (an in vivo model of IBD) and the C57BL/6J background strain in a 3 × 2 factorial design. While all Il10(-/-) mice developed significant colonic inflammation compared with C57BL/6J mice, this was not affected by the inclusion of KFE in the diet. These findings are in direct contrast to our previous study where KFE reduced inflammatory signalling in primary cells isolated from Il10(-/-) and C57BL/6J mice. Whole-genome gene and protein expression level profiling indicated that KFE influenced immune signalling pathways and metabolic processes within the colonic tissue; however, the effects were subtle. In particular, expression levels across gene sets related to adaptive immune pathways were significantly reduced using three of the four KFE in C57BL/6J mice. The present study highlights the importance of investigating food components identified by cell-based assays with appropriate in vivo models before making dietary recommendations, as a food that looks promising in vitro may not be effective in vivo.


Assuntos
Actinidia/química , Colo/efeitos dos fármacos , Frutas/química , Interleucina-10/genética , Interleucina-10/metabolismo , Extratos Vegetais/farmacologia , Animais , Colo/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Extratos Vegetais/química , Proteínas/classificação , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Cell Immunol ; 270(1): 70-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21600571

RESUMO

Inflammatory bowel disease (IBD) is a chronic, inflammatory disorder of the gastrointestinal tract involving an inappropriate immune response to commensal microorganisms in a genetically susceptible host. This study examined the effects of aqueous and ethyl acetate extracts of gold kiwifruit (Actinidia chinensis) or green kiwifruit (Actinidia deliciosa) using in vitro models of IBD. These models comprised primary macrophages and intestinal epithelial cells isolated from C57BL/5J and interleukin-10 gene deficient (Il10(-/-)) mice and RAW 264.7, a murine macrophage-like cell line. All four kiwifruit extracts reduced the activation of these models after lipopolysaccharide stimulation, decreasing nitric oxide and cytokine secretion by both Il10(-/-) and wild-type cells. The ethyl acetate extracts exhibited the highest anti-inflammatory activity, with almost complete suppression of lipopolysaccharide-stimulated macrophage activation. These results suggest that kiwifruit extracts have significant anti-inflammatory activity relevant to IBD. We suggest that the Il10(-/-) mouse is a suitable model for further study of these compounds.


Assuntos
Actinidia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Interleucina-10/deficiência , Interleucina-10/genética , Ativação de Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Citocinas/biossíntese , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/metabolismo , Mucosa Intestinal/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Fitoterapia
20.
J Plant Physiol ; 168(7): 629-38, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21071110

RESUMO

The limiting steps of ethylene-dependent (methylsulfanyl)alkanoate ester biosynthesis have been investigated in this study, using closely related Actinidia chinensis genotypes and the commercial cultivar 'Hort16A'. Quantification of methylsulfanyl-compounds from the headspace of ethylene-producing kiwifruits revealed little variation in their volatile composition but remarkable differences in the magnitude of the fruit volatile levels. To test whether the variations in fruit volatile levels can be correlated with the genotype-specific apparent catalytic efficiency, the initial slope of the substrate response curve (V'(Max)K(M)(-1) where V'(Max) is the apparent V(Max) in a crude extract) was evaluated for total alcohol acyltransferase (EC 2.3.1.84) activity. The V'(Max)K(M)(-1) values of different (methylsulfanyl)alkyl-CoAs were in a similar range for most genotypes, which suggests substrate availability as the limiting factor for (methylsulfanyl)alkanoate ester synthesis in these kiwifruit. Furthermore, gene expression analysis of acyltransferase expressed sequence tags points towards the action of multiple isozymes for (methylsulfanyl)alkanoate ester synthesis, emphasizing the central role of substrate levels on final ester concentrations. Volatile levels of the potential precursor methional were increased in ethylene-producing A. chinensis kiwifruit and a close connection between (methylsulfanyl)alkanoate ester formation and ethylene synthesis in plants is proposed. Finally, a possible biosynthetic pathway is presented.


Assuntos
Actinidia/metabolismo , Ésteres/metabolismo , Etilenos/metabolismo , Actinidia/enzimologia , Actinidia/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Frutas/enzimologia , Frutas/genética , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microextração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA