Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(1): e0378422, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36651773

RESUMO

Infection with Pasteurella multocida represents a significant economic threat to Australian pig producers, yet our knowledge of its antimicrobial susceptibilities is lagging, and genomic characterization of P. multocida strains associated with porcine lower respiratory disease is internationally scarce. This study utilized high-throughput robotics to phenotypically and genetically characterize an industry-wide collection of 252 clinical P. multocida isolates that were recovered between 2014 and 2019. Overall, antimicrobial resistance was found to be low, with clinical resistance below 1% for all tested antimicrobials except those from the tetracycline class. Five dominant sequence types, representing 64.8% of all isolates, were identified; they were disseminated across farms and had previously been detected in various animal hosts and countries. P. multocida in Australian farms remain controllable via current antimicrobial therapeutic protocols. The identification of highly dominant, interspecies-infecting strains provides insight into the epidemiology of the opportunistic pathogen, and it highlights a biosecurity threat to the Australian livestock industry. IMPORTANCE Pasteurellosis is rated by the World Animal Health Organisation (OIE) as a high-impact disease in livestock. Although it is well understood in many host-disease contexts, our understanding of the organism in porcine respiratory disease is limited. Given its high frequency of involvement in porcine respiratory disease complex (PRDC), it is important that we are aware of its antimicrobial susceptibilities so that we can respond quickly and appropriately with antimicrobial therapy. Genetic insights about the organism can help us to better understand its epidemiology and inform our biosecurity practices and prophylactic management.


Assuntos
Anti-Infecciosos , Pasteurella multocida , Suínos , Animais , Pasteurella multocida/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Austrália , Anti-Infecciosos/farmacologia , Genômica
2.
J Antimicrob Chemother ; 77(2): 400-408, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34791273

RESUMO

BACKGROUND: A key component to control of antimicrobial resistance (AMR) is the surveillance of food animals. Currently, national programmes test only limited isolates per animal species per year, an approach tacitly assuming that heterogeneity of AMR across animal populations is negligible. If the latter assumption is incorrect then the risk to humans from AMR in the food chain is underestimated. OBJECTIVES: To demonstrate the extent of phenotypic and genetic heterogeneity of Escherichia coli in swine to assess the need for improved protocols for AMR surveillance in food animals. METHODS: Eight E. coli isolates were obtained from each of 10 pigs on each of 10 farms. For these 800 isolates, AMR profiles (MIC estimates for six drugs) and PCR-based fingerprinting analysis were performed and used to select a subset (n = 151) for WGS. RESULTS: Heterogeneity in the phenotypic AMR traits of E. coli was observed in 89% of pigs, with 58% of pigs harbouring three or more distinct phenotypes. Similarly, 94% of pigs harboured two or more distinct PCR-fingerprinting profiles. Farm-level heterogeneity was detected, with ciprofloxacin resistance detected in only 60% of pigs from a single farm. Furthermore, 58 STs were identified, with the dominant STs being ST10, ST101, ST542 and ST641. CONCLUSIONS: Phenotypic and genotypic heterogeneity of AMR traits in bacteria from animal populations are real phenomena posing a barrier to correct interpretation of data from AMR surveillance. Evolution towards a more in-depth sampling model is needed to account for heterogeneity and increase the reliability of inferences.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fazendas , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes , Suínos
3.
Vet Microbiol ; 258: 109117, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34049073

RESUMO

Strains of enterotoxigenic Escherichia coli (ETEC) causing post-weaning diarrhoea (PWD) in piglets have a widespread and detrimental impact on animal health and the economics of pork production. Traditional approaches to control and prevention have placed a strong emphasis on antimicrobial use (AMU) to the extent that current prevalent porcine ETEC strains have developed moderate to severe resistance. This complicates treatment of ETEC infection by limiting therapeutic options, increasing diagnostic costs and increasing mortality rates. Management factors, the use of supra-physiological levels of zinc oxide and selected feed additives have all been documented to lower the incidence of ETEC infection in pigs; however, each intervention has its own limitations and cannot solely be relied upon as an alternative to AMU. Consequently, treatment options for porcine ETEC are moving towards the use of newer antimicrobials of higher public health significance. This review focuses on microorganisms and microbial-derived products that could provide a naturally evolved solution to ETEC infection and disease. This category holds a plethora of yet to be explored possibilities, however studies based around bacteriophage therapy, probiotics and the use of probiotic fermentation products as postbiotics have demonstrated promise. Ultimately, pig producers and veterinarians need these solutions to reduce the reliance on critically important antimicrobials (CIAs), to improve economic and animal welfare outcomes, and to lessen the One Health threat potentiated by the dissemination of AMR through the food chain.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/microbiologia , Animais , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Suínos , Doenças dos Suínos/prevenção & controle
4.
Front Microbiol ; 9: 1207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038598

RESUMO

This study investigated the frequency of antimicrobial non-susceptibility (defined as the frequency of isolates with minimum inhibitory concentrations above the CLSI susceptible clinical breakpoint) among E. coli and Salmonella spp. isolated from healthy Australian finisher pigs. E. coli (n = 201) and Salmonella spp. (n = 69) were isolated from cecal contents of slaughter-age pigs, originating from 19 farms distributed throughout Australia during July-December 2015. Isolates underwent minimum inhibitory concentration (MIC) susceptibility testing to 11 antimicrobials. The highest frequencies of non-susceptibility among respective isolates of E. coli and Salmonella spp. were to ampicillin (60.2 and 20.3%), tetracycline (68.2 and 26.1%), chloramphenicol (47.8 and 7.3%), and trimethoprim/sulfamethoxazole (33.8 and 11.6%). Four E. coli isolates had MICs above the wild-type epidemiological cut-off value for ciprofloxacin, with two isolates from the same farm classified as clinically resistant (MICs of > 4 µg/ml), a noteworthy finding given that fluoroquinolones (FQs) are not legally available for use in Australian food-producing animals. Three of these four E. coli isolates belonged to the sequence type (ST) 10, which has been isolated from both humans and production animals, whilst one isolate belonged to a new ST (7573) and possessed qnrS1. This study shows that non-susceptibility to first line antimicrobials is common among E. coli and Salmonella spp. isolates from healthy slaughter age pigs in Australia. However, very low levels of non-susceptibility to critically important antimicrobials (CIAs), namely third generation cephalosporins and fluoroquinolones were observed. Nevertheless, the isolation of two ciprofloxacin-resistant E. coli isolates from Australian pigs demonstrates that even in the absence of local antimicrobial selection pressure, fluoroquinolone-resistant E. coli clonal lineages may enter livestock production facilities despite strict biosecurity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA