Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(6): 2828-2846, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37234047

RESUMO

The ability of many arthropods to spin silk and its many uses bear testament to its importance in Nature. Despite over a century of research, however, the spinning process is still not fully understood. While it is widely accepted that flow and chain alignment may be involved, the link to protein gelation remains obscure. Using combinations of rheology, polarized light imaging, and infrared spectroscopy to probe different length scales, this work explored flow-induced gelation of native silk feedstock from Bombyx mori larvae. Protein chain deformation, orientation, and microphase separation were observed, culminating in the formation of antiparallel ß-sheet structures while the work rate during flow appeared as an important criterion. Moreover, infrared spectroscopy provided direct observations suggesting a loss of protein hydration during flow-induced gelation of fibroin in native silk feedstock, which is consistent with recently reported hypotheses.


Assuntos
Bombyx , Fibroínas , Animais , Seda/química , Bombyx/química , Fibroínas/química , Espectrofotometria Infravermelho , Conformação Proteica em Folha beta
2.
J Phys Chem Lett ; 14(4): 940-946, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36688732

RESUMO

The remarkable elastic properties of polymers are ultimately due to their molecular structure, but the relation between the macroscopic and molecular properties is often difficult to establish, in particular for (bio)polymers that contain hydrogen bonds, which can easily rearrange upon mechanical deformation. Here we show that two-dimensional infrared spectroscopy on polymer films in a miniature stress tester sheds new light on how the hydrogen-bond structure of a polymer is related to its viscoelastic response. We study thermoplastic polyurethane, a block copolymer consisting of hard segments of hydrogen-bonded urethane groups embedded in a soft matrix of polyether chains. The conventional infrared spectrum shows that, upon deformation, the number of hydrogen bonds increases, a process that is largely reversible. However, the 2DIR spectrum reveals that the distribution of hydrogen-bond strengths becomes slightly narrower after a deformation cycle, due to the disruption of weak hydrogen bonds, an effect that could explain the strain-cycle induced softening (Mullins effect) of polyurethane. These results show how rheo-2DIR spectroscopy can bridge the gap between the molecular structure and the macroscopic elastic properties of (bio)polymers.

3.
Biomacromolecules ; 23(12): 5340-5349, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36437734

RESUMO

The mechanical properties of biomaterials are dictated by the interactions and conformations of their building blocks, typically proteins. Although the macroscopic behavior of biomaterials is widely studied, our understanding of the underlying molecular properties is generally limited. Among the noninvasive and label-free methods to investigate molecular structures, infrared spectroscopy is one of the most commonly used tools because the absorption bands of amide groups strongly depend on protein secondary structure. However, spectral congestion usually complicates the analysis of the amide spectrum. Here, we apply polarized two-dimensional (2D) infrared spectroscopy (IR) to directly identify the protein secondary structures in native silk films cast from Bombyx mori silk feedstock. Without any additional peak fitting, we find that the initial effect of hydration is an increase of the random coil content at the expense of the helical content, while the ß-sheet content is unchanged and only increases at a later stage. This paper demonstrates that 2D-IR can be a valuable tool for characterizing biomaterials.


Assuntos
Bombyx , Fibroínas , Animais , Seda/química , Bombyx/química , Fibroínas/química , Espectrofotometria Infravermelho , Materiais Biocompatíveis , Amidas , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234809

RESUMO

We used two-dimensional infrared spectroscopy to disentangle the broad infrared band in the amide II vibrational regions of Bombyx mori native silk films, identifying the single amide II modes and correlating them to specific secondary structure. Amide I and amide II modes have a strong vibrational coupling, which manifests as cross-peaks in 2D infrared spectra with frequencies determined by both the amide I and amide II frequencies of the same secondary structure. By cross referencing with well-known amide I assignments, we determined that the amide II (N-H) absorbs at around 1552 and at 1530 cm-1 for helical and ß-sheet structures, respectively. We also observed a peak at 1517 cm-1 that could not be easily assigned to an amide II mode, and instead we tentatively assigned it to a Tyrosine sidechain. These results stand in contrast with previous findings from linear infrared spectroscopy, highlighting the ability of multidimensional spectroscopy for untangling convoluted spectra, and suggesting the need for caution when assigning silk amide II spectra.


Assuntos
Bombyx , Amidas/química , Animais , Seda , Espectrofotometria Infravermelho/métodos , Tirosina , Vibração
5.
Nat Commun ; 13(1): 4695, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970823

RESUMO

Recombinant spider silk proteins (spidroins) have multiple potential applications in development of novel biomaterials, but their multimodal and aggregation-prone nature have complicated production and straightforward applications. Here, we report that recombinant miniature spidroins, and importantly also the N-terminal domain (NT) on its own, rapidly form self-supporting and transparent hydrogels at 37 °C. The gelation is caused by NT α-helix to ß-sheet conversion and formation of amyloid-like fibrils, and fusion proteins composed of NT and green fluorescent protein or purine nucleoside phosphorylase form hydrogels with intact functions of the fusion moieties. Our findings demonstrate that recombinant NT and fusion proteins give high expression yields and bestow attractive properties to hydrogels, e.g., transparency, cross-linker free gelation and straightforward immobilization of active proteins at high density.


Assuntos
Fibroínas , Aranhas , Animais , Fibroínas/química , Hidrogéis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Seda/química , Aranhas/metabolismo
6.
PLoS One ; 17(5): e0268300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617163

RESUMO

Chemoresistance poses a great barrier to breast cancer treatment and is thought to correlate with increased matrix stiffness. We developed two-dimensional (2D) polyacrylamide (PAA) and three-dimensional (3D) alginate in vitro models of tissue stiffness that mimic the stiffness of normal breast and breast cancer. We then used these to compare cell viability in response to chemotherapeutic treatment. In both 2D and 3D we observed that breast cancer cell growth and size was increased at a higher stiffness corresponding to tumours compared to normal tissue. When chemotherapeutic response was measured, a specific differential response in cell viability was observed for gemcitabine in 2 of the 7 breast cancer cell lines investigated. MCF7 and T-47D cell lines showed gemcitabine resistance at 4 kPa compared to 500 Pa. These cell lines share a common phenotype of progesterone receptor (PGR) expression and, indeed, pre-treatment with the selective progesterone receptor modulator (SPRM) mifepristone abolished resistance to gemcitabine at high stiffness. Our data reveals that combined treatment with SPRMs may therefore help in reducing resistance to gemcitabine in stiffer breast tumours which are PGR positive.


Assuntos
Neoplasias da Mama , Receptores de Progesterona , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Feminino , Humanos , Progesterona/uso terapêutico , Receptores de Progesterona/metabolismo , Gencitabina
7.
Molecules ; 27(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35056868

RESUMO

The mechanism by which arthropods (e.g., spiders and many insects) can produce silk fibres from an aqueous protein (fibroin) solution has remained elusive, despite much scientific investigation. In this work, we used several techniques to explore the role of a hydration shell bound to the fibroin in native silk feedstock (NSF) from Bombyx mori silkworms. Small angle X-ray and dynamic light scattering (SAXS and DLS) revealed a coil size (radius of gyration or hydrodynamic radius) around 12 nm, providing considerable scope for hydration. Aggregation in dilute aqueous solution was observed above 65 °C, matching the gelation temperature of more concentrated solutions and suggesting that the strength of interaction with the solvent (i.e., water) was the dominant factor. Infrared (IR) spectroscopy indicated decreasing hydration as the temperature was raised, with similar changes in hydration following gelation by freezing or heating. It was found that the solubility of fibroin in water or aqueous salt solutions could be described well by a relatively simple thermodynamic model for the stability of the protein hydration shell, which suggests that the affected water is enthalpically favoured but entropically penalised, due to its reduced (vibrational or translational) dynamics. Moreover, while the majority of this investigation used fibroin from B. mori, comparisons with published work on silk proteins from other silkworms and spiders, globular proteins and peptide model systems suggest that our findings may be of much wider significance.


Assuntos
Géis/química , Proteínas/química , Seda/química , Água/química , Animais , Bombyx , Fenômenos Químicos , Difusão Dinâmica da Luz , Fibroínas/química , Agregados Proteicos , Sais , Espalhamento a Baixo Ângulo , Solubilidade , Espectrofotometria Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho , Temperatura
8.
Curr Drug Deliv ; 18(9): 1280-1291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33797383

RESUMO

BACKGROUND: Studying complexation between a wide variety of drugs and clay is of high importance in expanding the knowledge about controlled drug delivery and its exploitation. This study reports the use of isothermal calorimetry (ITC) in understanding the complexation process occurring between magnesium aluminium silicate (MAS) and metformin hydrochloride (MET), as a potentially controlled release drug delivery system. OBJECTIVES: To fully characterise and understand the complexes formed between MAS and MET and how that might impact on controlled release systems. METHODS: MAS and MET complex dispersions and particles were formulated and analysed using ITC, DSC, XRPD, ATR-FTIR, SEM/EDX, digital microscopy and 2D-SAXS. RESULTS: The calorimetric results confirmed the binding between MET and MAS at various pHs (5, 7 and 9) and temperatures (25 ºC and 37 ºC). The overall change in enthalpy was found to be exothermic with a comparatively small entropic contribution to the total change in Gibbs free energy, implying that the binding was an enthalpically driven process. These findings suggest that the binding process was dominated by hydrogen bonding and electrostatic interactions. pH and temperature variation did not have a great impact on the binding, as observed from the similarity in enthalpy (ΔH), entropy (ΔS) or Gibbs free energy (ΔG), with the reaction being only slightly more exothermic at pH 5 and at 37 ºC. 2D-SAXS was able to differentiate between MAS particulates and MAS-MET complexes when analysed in their liquid form suggesting the importance of appropriate methodology and instrumentation used in characterisation. CONCLUSION: ITC was successfully used in understanding the complexation process occurring between MAS and MET. Care and consideration however should thus be taken in the accurate determination and characterisation techniques for the formation of complexes for controlled release using MAS.


Assuntos
Metformina , Preparações Farmacêuticas , Compostos de Alumínio , Calorimetria , Argila , Magnésio , Compostos de Magnésio , Espalhamento a Baixo Ângulo , Silicatos , Termodinâmica , Difração de Raios X
9.
Molecules ; 26(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809814

RESUMO

The flow-induced self-assembly of entangled Bombyx mori silk proteins is hypothesised to be aided by the 'registration' of aligned protein chains using intermolecularly interacting 'sticky' patches. This suggests that upon chain alignment, a hierarchical network forms that collectively stretches and induces nucleation in a precisely controlled way. Through the lens of polymer physics, we argue that if all chains would stretch to a similar extent, a clear correlation length of the stickers in the direction of the flow emerges, which may indeed favour such a registration effect. Through simulations in both extensional flow and shear, we show that there is, on the other hand, a very broad distribution of protein-chain stretch, which suggests the registration of proteins is not directly coupled to the applied strain, but may be a slow statistical process. This qualitative prediction seems to be consistent with the large strains (i.e., at long time scales) required to induce gelation in our rheological measurements under constant shear. We discuss our perspective of how the flow-induced self-assembly of silk may be addressed by new experiments and model development.


Assuntos
Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Seda/metabolismo , Animais , Fibroínas/metabolismo , Polímeros/metabolismo , Reologia/métodos , Estresse Mecânico
10.
ACS Biomater Sci Eng ; 7(2): 462-471, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33397078

RESUMO

Recombinant spider silk has emerged as a biomaterial that can circumvent problems associated with synthetic and naturally derived polymers, while still fulfilling the potential of the native material. The artificial spider silk protein NT2RepCT can be produced and spun into fibers without the use of harsh chemicals and here we evaluate key properties of NT2RepCT dope at native-like concentrations. We show that NT2RepCT recapitulates not only the overall secondary structure content of a native silk dope but also emulates its viscoelastic rheological properties. We propose that these properties are key to biomimetic spinning and that optimization of rheological properties could facilitate successful spinning of artificial dopes into fibers.


Assuntos
Biomimética , Seda , Estrutura Secundária de Proteína , Reologia , Estresse Mecânico
11.
Acta Biomater ; 117: 204-212, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33007482

RESUMO

Whilst flow is the basis for silk fibre formation, subtle changes in a silk feedstocks' chemical environment may serve to increase both energetic efficiency and control hierarchical structure development during spinning. Despite the role of pH being largely understood, the influence of metal ions is not, only being inferred by correlative work and observations. Through a combination of rheology and microscopy, we provide a causative study of how the most abundant metal ions in the silk feedstock, Ca2+ and K+, affect its flow properties and structure. Our results show that Ca2+ ions increase viscosity and prevent molecular alignment and aggregation, providing ideal storage conditions for unspun silk. In contrast, the addition of K+ ions promotes molecular alignment and aggregation and therefore seems to transfer the silk feedstock into a spinning state which confirms recent 'sticky reptation' modelling hypotheses. Additionally, we characterised the influence of the ubiquitous kosmotropic agent Li+, used to prepare regenerated silk solutions, and find that it promotes molecular alignment and prevents aggregation which may permit a range of interesting artificial silk processing techniques to be developed. In summary, our results provide a clearer picture of how metal ions co-ordinate, control and thus contribute towards silk protein self-assembly which in turn can inspire structuring approaches in other biopolymer systems.


Assuntos
Bombyx , Fibroínas , Animais , Íons , Reologia , Seda , Viscosidade
12.
Macromolecules ; 53(7): 2669-2676, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32308215

RESUMO

Silk is one of the most intriguing examples of biomolecular self-assembly, yet little is understood of molecular mechanisms behind the flow behavior generating these complex high-performance fibers. This work applies the polymer physics of entangled solution rheology to present a first microphysical understanding of silk in the linear viscoelastic regime. We show that silk solutions can be approximated as reptating polymers with "sticky" calcium bridges whose strength can be controlled through the potassium concentration. This approach provides a new window into critical microstructural parameters, in particular identifying the mechanism by which potassium and calcium ions are recruited as a powerful viscosity control in silk. Our model constitutes a viable starting point to understand not only the "flow-induced self-assembly" of silk fibers but also a broader range of phenomena in the emergent field of material-focused synthetic biology.

13.
J Pharm Anal ; 10(1): 78-85, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32123602

RESUMO

An understanding of the thermodynamics of the complexation process utilized in sustaining drug release in clay matrices is of great importance. Several characterisation techniques as well as isothermal calorimetry were utilized in investigating the adsorption process of a model cationic drug (diltiazem hydrochloride, DIL) onto a pharmaceutical clay system (magnesium aluminium silicate, MAS). X-ray powder diffraction (XRPD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and optical microscopy confirmed the successful formation of the DIL-MAS complexes. Drug quantification from the complexes demonstrated variable behaviour in the differing media used with DIL degrading to desacetyl diltiazem hydrochloride (DC-DIL) in the 2 M HCl media. Here also, the authors report for the first time two binding processes that occurred for DIL and MAS. A competitor binding model was thus proposed and the thermodynamics obtained suggested their binding processes to be enthalpy driven and entropically unfavourable. This information is of great importance for a formulator as care and consideration should be given with appropriate media selection as well as the nature of binding in complexes.

14.
ACS Biomater Sci Eng ; 6(1): 705-714, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463209

RESUMO

Light-based structuring methods have shown reconstituted silk to be a versatile and appropriate material for a range of optical and biomaterial-based applications. However, without an understanding of how an unmodified, native, silk responds to photoprocessing, the full potential of this material cannot be realized. Here, we show that the use of native silk enables the production of compound patterns with improved resolution and image quality when quantitatively compared to standard reconstituted silk, which we link directly to the influence of molecular weight. Further insights into the mechanism behind silk structure development are provided through mechanical (rheological) and structural (FTIR) measurements and results show that processing can tune properties over several orders of magnitude, enabling potential replication of several soft tissue types. Finally, broadening our application perspective, this combination of mask-less lithography and native silk resulted in the fabrication of transparent optical elements for data storage and labeling.


Assuntos
Fibroínas , Seda , Materiais Biocompatíveis , Peso Molecular , Reologia
15.
Macromol Biosci ; 19(3): e1800228, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30411857

RESUMO

Native silk proteins, extracted directly from the silk gland prior to spinning, offer access to a naturally hydrated protein that has undergone little to no processing. Combined with differential scanning calorimetry (DSC), it is possible to probe the thermal stability and hydration status of silk and thus investigate its denaturation and solidification, echoing that of the natural spinning process. It is found that native silk is stable between -10 °C and 55 °C, and both the high-temperature enthalpy of denaturation (measured via modulated temperature DSC) and a newly reported low-temperature ice-melting transition may serve as useful quality indicators in the future for artificial silks. Finally, compared to albumin, silk's denaturation enthalpy is much lower than expected, which is interpreted within a recently proposed entropic desolvation framework which can serve to unveil the low-energy aquamelt processing pathway.


Assuntos
Bombyx/química , Varredura Diferencial de Calorimetria , Temperatura Alta , Seda/química , Animais
16.
Macromol Biosci ; 19(3): e1800188, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30040173

RESUMO

Variation in silk feedstocks is a barrier both to our understanding of natural spinning and biomimetic endeavors. To address this, compositional changes are investigated in feedstock specimens from the domesticated silkworm (Bombyx mori). It is found that the feedstock viscosity decreased systematically by over two orders of magnitude during cocoon construction. Potential factors such as protein concentration, molecular weight, pH, or the presence of trehalose are excluded, whereas a clear correlation appear between viscosity and the relative concentrations of Ca2+ and K+ ions. It is expected that Ca2+ ions would favor "salt bridges" between acidic (Asp and Glu) amino acids, leading to an increased viscosity, whereas K+ ions would compete for these sites, thereby reducing viscosity. Thus, these findings suggest a simple, systematic yet sophisticated control of feedstock viscosity in the silkworm, which in turn can be applied to future industrial silk production.


Assuntos
Bombyx/química , Cálcio/química , Proteínas de Insetos/química , Potássio/química , Seda/química , Animais , Reologia , Viscosidade
17.
Soft Matter ; 14(43): 8838-8845, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30349916

RESUMO

Silk fibres are assembled via flow. While changes in the physiological environment of the gland as well as the shear rheology of silk are largely understood, the effect of extensional flow fields on native silk proteins is almost completely unknown. Here we demonstrate that filament stretching on a conventional tensile tester is a suitable technique to assess silk's extensional flow properties and its ability to form fibres under extensional conditions characteristic of natural spinning. We report that native Bombyx mori silk responds differently to extensional flow fields when compared to synthetic linear polymers, as evidenced by a higher Trouton ratio which we attribute to silk's increased interchain interactions. Finally, we show that native silk proteins can only be spun into stable fibres at low extension rates as a result of dehydration, suggesting that extensional fields alone are unable to induce natural fibre formation.

18.
Int J Mol Sci ; 17(11)2016 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-27801879

RESUMO

The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc.,) were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled.


Assuntos
Bombyx/química , Fibroínas/química , Seda/química , Soluções/química , Animais , Reologia , Estresse Mecânico , Viscosidade
19.
Biomacromolecules ; 17(8): 2662-71, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27315508

RESUMO

Variability in silk's rheology is often regarded as an impediment to understanding or successfully copying the natural spinning process. We have previously reported such variability in unspun native silk extracted straight from the gland of the domesticated silkworm Bombyx mori and discounted classical explanations such as differences in molecular weight and concentration. We now report that variability in oscillatory measurements can be reduced onto a simple master-curve through normalizing with respect to the crossover. This remarkable result suggests that differences between silk feedstocks are rheologically simple and not as complex as originally thought. By comparison, solutions of poly(ethylene-oxide) and hydroxypropyl-methyl-cellulose showed similar normalization behavior; however, the resulting curves were broader than for silk, suggesting greater polydispersity in the (semi)synthetic materials. Thus, we conclude Nature may in fact produce polymer feedstocks that are more consistent than typical man-made counterparts as a model for future rheological investigations.


Assuntos
Biopolímeros/química , Bombyx/química , Fibroínas/química , Proteínas de Insetos/química , Seda/química , Animais , Elasticidade , Teste de Materiais , Reologia , Estresse Mecânico , Viscosidade
20.
Biosci Rep ; 35(4)2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26181365

RESUMO

The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning ß-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like ß-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in ß-strand consistent with a monomeric ß-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Grupo Borrelia Burgdorferi/química , Fator H do Complemento/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/metabolismo , Fator H do Complemento/metabolismo , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA