Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 7: e8092, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799075

RESUMO

River impoundment constitutes one of the most important anthropogenic impacts on the World's rivers. An increasing number of studies have tried to quantify the effects of river impoundment on riverine ecosystems over the past two decades, often focusing on the effects of individual large reservoirs. This study is one of the first to use a large-scale, multi-year diatom dataset from a routine biomonitoring network to analyse sample sites downstream of a large number of water supply reservoirs (n = 77) and to compare them with paired unregulated control sites. We analysed benthic diatom assemblage structure and a set of derived indices, including ecological guilds, in tandem with multiple spatio-temporal variables to disclose patterns of ecological responses to reservoirs beyond the site-specific scale. Diatom assemblage structure at sites downstream of water supply reservoirs was significantly different to control sites, with the effect being most evident at the regional scale. We found that regional influences were important drivers of differences in assemblage structure at the national scale, although this effect was weaker at downstream sites, indicating the homogenising effect of river impoundment on diatom assemblages. Sites downstream of reservoirs typically exhibited a higher taxonomic richness, with the strongest increases found within the motile guild. In addition, Trophic Diatom Index (TDI) values were typically higher at downstream sites. Water quality gradients appeared to be an important driver of diatom assemblages, but the influence of other abiotic factors could not be ruled out and should be investigated further. Our results demonstrate the value of diatom assemblage data from national-scale biomonitoring networks to detect the effects of water supply reservoirs on instream communities at large spatial scales. This information may assist water resource managers with the future implementation of mitigation measures such as setting environmental flow targets.

2.
Sci Total Environ ; 650(Pt 2): 2648-2656, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30296772

RESUMO

River impoundment by the construction of dams potentially modifies a wide range of abiotic and biotic factors in lotic ecosystems and is considered one of the most significant anthropogenic impacts on rivers globally. The past two decades have witnessed a growing body of research centred on quantifying the effects of river impoundment, with a focus on mitigating and managing the effects of individual large dams. This study presents a novel multi-scale comparison of paired downstream and control sites associated with multiple water supply reservoirs (n = 80) using a spatially extensive multi-year dataset. Macroinvertebrate community structure and indices were analysed in direct association with spatial (e.g. region) and temporal variables (e.g. season) to identify consistent patterns in ecological responses to impoundment. Macroinvertebrate communities at monitoring sites downstream of water supply reservoirs differed significantly from those at control sites at larger spatial scales, both in terms of community structure and taxa richness. The effect was most significant at the regional scale, while biogeographical factors appeared to be important drivers of community differences at the national scale. Water supply reservoirs dampened natural seasonal patterns in community structure at sites downstream of impoundments. Generally, taxonomic richness was higher and %EPT richness lower at downstream sites. Biomonitoring indices used for river management purposes were able to detect community differences, demonstrating their sensitivity to river regulation activities. The results presented improve our understanding of the spatially extensive and long-term effects of water supply reservoirs on instream communities and provide a basis for the future implementation of mitigation measures on impounded rivers and heavily modified waterbodies.


Assuntos
Biota , Monitoramento Ambiental , Invertebrados/fisiologia , Movimentos da Água , Abastecimento de Água , Animais , Inglaterra , Rios , Estações do Ano
3.
J Environ Qual ; 43(1): 155-67, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602549

RESUMO

Environmental flows-the quantity of water required to maintain a river ecosystem in its desired state-are of particular importance in areas of high natural value. Water-dependent ecosystems are exposed to the risk of climate change through altered precipitation and evaporation. Rivers in the Narew basin in northeastern Poland are known for their valuable river and wetland ecosystems, many of them in pristine or near-pristine condition. The objective of this study was to assess changes in the environmental flow regime of the Narew river system, caused by climate change, as simulated by hydrological models with different degrees of physical characterization and spatial aggregation. Two models were assessed: the river basin scale model Soil and Water Assessment Tool (SWAT) and the continental model of water availability and use WaterGAP. Future climate change scenarios were provided by two general circulation models coupled with the A2 emission scenario: IPSL-CM4 and MIROC3.2. To assess the impact of climate change on environmental flows, a method based conceptually on the "range of variability" approach was used. The results indicate that the environmental flow regime in the Narew basin is subject to climate change risk, whose magnitude and spatial variability varies with climate model and hydrological modeling scale. Most of the analyzed sites experienced moderate impacts for the Generic Environmental Flow Indicator (GEFI), the Floodplain Inundation Indicator, and the River Habitat Availability Indicator. The consistency between SWAT and WaterGAP for GEFI was medium: in 55 to 66% of analyzed sites, the models suggested the same level of impact. Hence, we suggest that state-of-the-art, high-resolution, global- or continental-scale models, such as WaterGAP, could be useful tools for water management decision-makers and wetland conservation practitioners, whereas models such as SWAT should serve as a complementary tool for more specific, smaller-scale, local assessments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA