Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1383291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784653

RESUMO

Babesiosis, a zoonotic blood protozoal disease, threatens humans and animals and is difficult to treat due to growing antimicrobial resistance. The study aimed to investigate the therapeutic efficacy of artesunate (AS), a well-known derivative of artemisinin, against Babesia microti (B. microti) using a murine infection model. Male BALB/c mice (6 weeks old; 15 per group) were chosen and randomly divided into 1) the control group, 2) the B. microti group, and 3) the B. microti + artesunate treatment groups. AS treatment at 2 mg/kg, 4 mg/kg, and 8 mg/kg of body weight significantly (p < 0.05) reduced the B. microti load in blood smears in a dose-dependent manner. Additionally, AS treatment mitigated the decrease in body weight and restored the normal state of the liver and spleen viscera index compared to the B. microti-infected group after 28 days. Hematological analysis revealed significant increases in RBC, WBC, and PLT counts post-AS treatment compared to the B. microti-infected group. Furthermore, AS administration resulted in significant reductions in total protein, bilirubin, ALT, AST, and ALP levels, along with reduced liver and spleen inflammation and lesions as observed through histopathological analysis. AS also elicited dose-dependent changes in mRNA and protein expression levels of apoptotic, proinflammatory, and anti-inflammatory cytokines in the liver compared to the control and B. microti-infected groups. Immunolabeling revealed decreased expression of apoptotic and inflammation-related proteins in AS-treated hepatic cytoplasm compared to the B. microti-infected group. AS also in dose-dependent manner decreased apoptotic protein and increased Bcl-2. Overall, these findings underscore the potential of AS as an anti-parasitic candidate in combating B. microti pathogenesis in an in vivo infection model, suggesting its promise for clinical trials as a treatment for babesiosis.

2.
Microb Pathog ; 191: 106675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705216

RESUMO

Bovine mastitis, caused by Streptococcus agalactiae (Group B Streptococcus; GBS), poses significant economic challenges to the global dairy industry. Mouse models serves as valuable tools for assessing GBS-induced infections as an alternative to large animals. This study aimed to investigate the LD50 dose, organ bacterial load, and quantification of peritoneal leukocyte populations for GBS serotypes Ia and II isolates from China and Pakistan. Additionally, we measured indicators such as lactoferrin, albumin, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-2) and anti-inflammatory cytokines (IL-10 and TGF-ß) in serum and tissue samples were evaluated using ELISA and qPCR, respectively. BALB/c mice (4 mice per group) received individual intraperitoneal injections of 100 µl containing specific bacterial inoculum concentrations (ranging from 105 to 109 CFU per mouse) of Chinese and Pakistani GBS isolates (serotypes Ia and II). Control groups received 100 µL of sterile PBS. Results revealed that the LD50 bacterial dose causing 50 % mortality in mice was 107 CFU. The highest bacterial load in all experimental groups was quantified in the peritoneum, followed by blood, mammary gland, liver, spleen, lungs, and brain. The most significant bacterial dissemination was observed in mice inoculated with Pakistani serotype Ia at 24 h, with a subsequent notable decline in bacterial counts at day 3. Notably, infection with Pakistani serotype Ia showed a trend of increased total leukocyte counts, significantly higher than Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II. A substantial influx of neutrophils and lymphocytes was observed in response to all tested serotypes, with Pakistani serotype Ia inducing a significantly higher influx compared to other groups (Pakistani serotype II, Chinese serotype Ia, and Chinese serotype II). Furthermore, TNF-α, IL-1ß, IL-2, and IL-6 expressions were significantly increased in mice one day after infection with the Pakistani serotype Ia. Compared to mice infected with the Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II, those infected with the Pakistani serotype Ia isolate exhibited the highest production of IL-10 and TGF-ß, along with significantly increased concentrations of lactoferrin, albumin, and MPO. These findings suggest that the persistence and severity of infection caused by the Pakistani serotype Ia may be linked to its ability to spread to deeper tissues. This study enhances our understanding of the clinical characteristics of bovine mastitis caused by S. agalactiae in China and Pakistan.


Assuntos
Citocinas , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Sorogrupo , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/classificação , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/genética , Camundongos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , China , Citocinas/metabolismo , Citocinas/sangue , Feminino , Paquistão , Carga Bacteriana , Bovinos , Dose Letal Mediana , Mastite Bovina/microbiologia
3.
Int J Biol Macromol ; 269(Pt 2): 132077, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723832

RESUMO

This study investigated the structure of acid Alhagi camelorum Fischa polysaccharide (aAP) and its impact on intestinal activity in mice. The results showed that aAP comprised of the fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galacturonic acid, glucuronic acid with the molar ratio of 0.81:14.97:10.84:11.14:3.26:0.80:0.80:54.92:2.47 with the molecular weight (Mw) of 22.734 kDa. Additionally, the composition of aAP was assessed via FT-IR, methylation, and NMR analyses, indicating that the backbone of the aAP was consisted of →4)-α-D-GalpA-6-OMe-(1 â†’ 4)-α-GalpA-(1 â†’ and →4)-α-D-GalpA-6-OMe-(1 â†’ 2)-α-L-Rhap-(1→, as well as →4)-ß-D-Galp- and →5)-α-L-Araf- for the branched chain. Furthermore, ICR mice underwent intragastric administration of different concentrations of aAP for 7 consecutive days. The results showed that aAP enhanced the murine spleen and thymus indices, promoted the secretion of serum lgG antibody, intestinal lgA antibody and intestinal cytokines, improved the morphology of intestinal villi and crypts, enhanced quantity of intestinal IELs and IgA+ cells, and activated T lymphocytes and DC cells in MLNs. In summary, these findings suggest that the utilization of aAP could enhance the immune response of the murine intestinal mucosa.


Assuntos
Polissacarídeos , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Camundongos , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Camundongos Endogâmicos ICR , Peso Molecular , Baço/efeitos dos fármacos , Baço/imunologia , Baço/citologia , Timo/efeitos dos fármacos , Citocinas/metabolismo
4.
Vaccines (Basel) ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140198

RESUMO

Haemonchus contortus is a gastrointestinal parasite that adversely impacts small ruminants, resulting in a notable reduction in animal productivity. In the current investigation, we developed a nanovaccine by encapsulating the recombinant protein rHcES-15, sourced from the excretory/secretory products of H. contortus, within biodegradable poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). The development of this nanovaccine involved the formulation of PLGA NPs using a modified double emulsion solvent evaporation technique. Scanning electron microscopy (SEM)verified the successful encapsulation of rHcES-15 within PLGA NPs, exhibiting a size range of 350-400 nm. The encapsulation efficiency (EE) of the antigen in the nanovaccine was determined to be 72%. A total of forty experimental mice were allocated into five groups, with the nanovaccine administered on day 0 and the mice euthanized at the end of the 14-day trial. The stimulation index (SI) from the mice subjected to the nanovaccine indicated heightened lymphocyte proliferation (*** p < 0.001) and a noteworthy increase in anti-inflammatory cytokines (IL-4, IL-10, and IL-17). Additionally, the percentages of T-cells (CD4+, CD8+) and dendritic cell phenotypes (CD83+, CD86+) were significantly elevated (** p < 0.01, *** p < 0.001) in mice inoculated with the nanovaccine compared to control groups and the rHcES-15 group. Correspondingly, higher levels of antigen-specific serum immunoglobulins (IgG1, IgG2a, IgM) were observed in response to the nanovaccine in comparison to both the antigenic (rHcES-15) and control groups (* p < 0.05, ** p < 0.01). In conclusion, the data strongly supports the proposal that the encapsulation of rHcES-15 within PLGA NPs effectively triggers immune cells in vivo, ultimately enhancing the antigen-specific adaptive immune responses against H. contortus. This finding underscores the promising potential of the nanovaccine, justifying further investigations to definitively ascertain its efficacy.

5.
Front Pharmacol ; 14: 1347817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273828

RESUMO

Background: Polysaccharide metal chelate exhibit both immunoregulatory activity and metal element supplementation effects. Methods: In this study, Ruoqiang jujube polysaccharide copper chelate (RJP-Cu) was prepared and the preparation conditions were optimized using the response surface method. Subsequently, RJP-Cu was administered to lambs to evaluate its impact on growth performance, copper ion (Cu2+) supplementation, immune enhancement, and intestinal flora was evaluated. Results: The results indicated that optimal RJP-Cu chelation conditions included a sodium citrate content of 0.5 g, a reaction temperature of 50°C, and a solution pH of 8.0, resulting in a Cu2+ concentration of 583°mg/kg in RJP-Cu. Scanning electron microscopy (SEM) revealed significant structural changes in RJP before and after chelation. RJP-Cu displaying characteristic peaks of both polysaccharides and Cu2+ chelates. Blood routine indexes showed no significant differences among the RJP-Cu-High dose group (RJP-Cu-H), RJP-Cu-Medium dose group (RJP-Cu-M), RJP-Cu-low dose group (RJP-Cu-L) and the control group (p > 0.05). However, compared with the control group, the RJP-Cu-H, M, and L dose groups significantly enhanced lamb production performance (p < 0.05). Furthermore, RJP-Cu-H, M, and L dose groups significantly increased serum Cu2+ concentration, total antioxidant capacity (T-AOC), catalase (CAT), and total superoxide dismutase (T-SOD) contents compared with control group (p < 0.05). The RJP-Cu-H group exhibited significant increases in serum IgA and IgG antibodies, as well as the secretion of cytokines IL-2, IL-4, and TNF-α compared to the control group (p < 0.05). Furthermore, RJP-Cu-H group increased the species abundance of lamb intestinal microbiota, abundance and quantity of beneficial bacteria, and decrease the abundance and quantity of harmful bacteria. The RJP-Cu-H led to the promotion of the synthesis of various Short Chain Fatty Acids (SCFAs), improvements in atrazine degradation and clavulanic acid biosynthesis in lambs, while reducing cell apoptosis and lipopolysaccharide biosynthesis. Conclusion: Thus, these findings demonstrate that RJP-Cu, as a metal chelate, could effectively promote lamb growth performance, increase Cu2+ content, and potentially induce positive immunomodulatory effects by regulating antioxidant enzymes, antibodies, cytokines, intestinal flora, and related metabolic pathways.

6.
Res Vet Sci ; 152: 61-71, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35932590

RESUMO

Given the central role of dendritic cells (DCs) in directing cell-mediated immunity, this study investigated the capability of Eimeria tenella 14-kDa phosphohistidine phosphatase (EtPHP14) to mature chicken DCs and initiate DC-induced T cell immunity. With the aim of identifying novel protective Eimeria antigen, EtPHP14 gene was successfully cloned and EtPHP14 recombinant protein (rEtPHP14) was expressed in Escherichia coli expression system. rEtPHP14 binding was identified on the surface of chicken DCs by Immunofluorescence assay. DC phenotypes were evaluated by flow cytometry and results indicated that MHCII, CD80, CD86, CD1.1 and CD11c were up-modulated in DCs following rEtPHP14 treatment. RT-qPCR showed increased transcript levels of DC maturation markers CCL5, CCR7 and CD83 in rEtPHP14-treated DCs. Moreover, transcript profile of genes associated with intracellular signaling pathways that characterize the immunogenic (TLR signaling) or tolerogenic (Wnt signaling) state of DCs revealed that TLR signaling was stimulated and Wnt signaling was inhibited in rEtPHP14-treated DCs. Furthermore, proliferation of T cells and differentiation of CD4+ cells were promoted when rEtPHP14-treated DCs were co-cultured with autologous T cells. DCs incubated with rEtPHP14 alone expressed increased IL-12 and IFN-γ levels while IL-10 and TGF-ß levels remained unaffected. Likewise, similar trend of IFN-γ expression was noted in rEtPHP14 treated DC-T cell coculture, whereas IL-4 expression remained unchanged. These findings indicate that EtPHP14 is an important molecule that can upregulate host immune response, particularly Th1, during host-parasite interaction, suggesting its importance as a novel candidate for coccidiosis vaccine.


Assuntos
Citocinas , Eimeria tenella , Animais , Citocinas/análise , Galinhas/metabolismo , Células Dendríticas , Monoéster Fosfórico Hidrolases/metabolismo , Diferenciação Celular , Células Th1/química , Células Th1/metabolismo
7.
Parasitol Res ; 121(2): 675-689, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34984543

RESUMO

Eimeria maxima (E. maxima) are an intracellular apicomplexan protozoan that causes intestinal coccidiosis in chickens. The purpose of this research was to develop a novel delivery approach for recombinant E. maxima (rEm) 14-3-3 antigen to elicit enhanced immunogenic protection using poly (D, L-lactide-co-glycolide) (PLGA) and chitosan (CS) nanoparticles (NPs) against E. maxima challenge. The morphologies of prepared antigen-loaded NPs (PLGA/CS-rEm14-3-3 NPs) were visualized by a scanning electron microscope. The rEm14-3-3 and PLGA/CS-rEm14-3-3 NPs-immunized chicken-induced changes of serum cytokines, IgY-antibody level, and T-lymphocyte subsets and protective efficacies against E. maxima challenge were evaluated. The results revealed that encapsulated rEm14-3-3 in PLGA and CS NPs presented spherical morphology with a smooth surface. The chickens immunized with only rEm14-3-3 and PLGA/CS-rEm14-3-3 NPs elicited a significant (p<0.05) higher level of IFN-γ cytokine, stimulated the proportions of CD4+/CD3+, CD8+/CD3+ T-cells, and provoked sera IgY-antibody immune response compared to control groups (PBS, pET-32a, PLGA, and CS). Whereas, PLGA-rEm14-3-3 NP-immunized chicken provoked a higher level of IFN- γ production and IgY-antibody response rather than CS-rEm14-3-3 and bare antigen, relatively. The animal experiment results ratified that PLGA-rEm14-3-3 NP-immunized chicken significantly alleviated the relative body weight gain (%), decreased lesion score, and enhanced oocyst decrease ratio compared to CS-rEm14-3-3 NPs and only rEm14-3-3. The anti-coccidial index of the chicken vaccinated with the PLGA-rEm14-3-3 NPs was (180.1) higher than that of the Cs-rEm14-3-3 NPs (167.4) and bare antigen (165.9). Collectively, our statistics approved that PLGA NPs might be an efficient antigen carrier system (Em14-3-3) to act as a nanosubunit vaccine that can improve protective efficacies in chicken against E. maxima challenge.


Assuntos
Quitosana , Coccidiose , Eimeria , Nanopartículas , Doenças das Aves Domésticas , Vacinas Protozoárias , Animais , Galinhas , Coccidiose/prevenção & controle , Coccidiose/veterinária , Doenças das Aves Domésticas/prevenção & controle
8.
Vaccines (Basel) ; 9(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452060

RESUMO

Trichinellosis is a foodborne zoonotic disease caused by Trichinella spp., including Trichinella spiralis. In the present study, T. spiralis membrane-associated progesterone receptor component-2 (Ts-MAPRC2) gene was cloned and characterized using protein sequencing analysis. Furthermore, the expression, purification, immunoblot assay, binding ability with progesterone antibody, and immunofluorescence assay were performed. A direct effect of progesterone (P4) and mifepristone (RU486) on the Ts-MAPRC2 gene was determined using in vitro cell culture that showed different expression levels at all developmental stages (muscle larvae (ML), female adult worm (F-AL), male adult worm (M-AL), and newborn larvae (NBL)). Subsequently, the in vitro phenotypic effects of P4, RU486, and rTs-MAPRC2-Ab on F-AL and ML stages were measured. Later, the in vivo phenotypic effect and relative mRNA expression of mifepristone on the F-AL stage were studied. Our results revealed that the Ts-MAPRC2 gene is critical to maintaining pregnancy in the female adult worm (F-AL) of T. spiralis. The 300 ng/mL of P4 and 100 ng/mL of RU486 showed downregulation of the Ts-MAPRC2 gene in F-AL (p ≤ 0.05). This plays an important role in abortion and possibly decreases the worm burden of T. spiralis in the host. Only 30 ng/mL P4 showed significant upregulation in F-AL (p ≤ 0.05). The current study provides new insights regarding the antihormone (P4 and RU486) drug design and vaccine therapy of recombinant (rTs-MAPRC2) protein as well as their combined effects to control T. spiralis infection.

9.
Poult Sci ; 100(5): 101083, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799117

RESUMO

Eimeria tenella is a protozoan parasite endemic in chickens and is one of the causative agents of avian coccidiosis. The aim of this research was to determine if poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles carrying recombinant TA4 protein of E. tenella (rEtTA4) could improve the level of protective immunity against E. tenella challenge. Recombinant TA4 protein was expressed and purified. Poly (D, L-lactide-co-glycolide) loaded with rEtTA4 (PLGA-rEtTA4) nanoparticles was prepared and was delivered to 2-week-old layer chickens via intramuscular inoculation. Chickens injected with PBS and PLGA nanoparticles were served as control groups. The rEtTA4 and PLGA-rEtTA4 nanoparticles induced changes of serum cytokines, IgY levels, and T lymphocytes subpopulation, and the protective efficacy against E. tenella challenge was evaluated. Results showed that both rEtTA4 and PLGA-rEtTA4 vaccination groups induced significantly higher levels of specific EtTA4 IgY antibody and IL-17 and higher proportion of CD8+ T lymphocytes. However, no significant differences were observed in the proportion of CD4+ T lymphocytes compared with the PBS control. Chickens immunized with rEtTA4 and PLGA-rEtTA4 prominently increased the BW gains and decreased oocyst output compared with chickens immunized with PBS and PLGA after oral challenge with E. tenella. Poly (D, L-lactide-co-glycolide) encapsulated rEtTA4 nanoparticles-immunized chickens significantly induced higher levels of interferon gamma, IL-6, and IL-17 and a little bit higher proportion of CD8+ T lymphocytes compared with rEtTA4 subunit vaccine-immunized chickens. Thus, PLGA encapsulated rEtTA4 nanoparticles appeared to have great potential to enhance the immune response and improved the protective efficacy against E. tenella infection. Our results provided available protective subunit vaccine rEtTA4 and PLGA loaded with rEtTA4 nanoparticles against coccidiosis and suggested that PLGA nanoparticles could be an effective adjuvant to enhance the protective efficacy of rEtTA4 subunit vaccine.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Vacinas Protozoárias , Animais , Galinhas , Coccidiose/prevenção & controle , Coccidiose/veterinária , Dioxanos , Doenças das Aves Domésticas/prevenção & controle
10.
Res Vet Sci ; 136: 247-258, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33721712

RESUMO

Previously, it was found that several proteins of Haemonchus contortus were involved in the stimulation of the host immune system. However, the information about the selection of superlative antigens with immunogenic efficacies on host DCs is lacking. In the current study, the stimulatory effects of five recombinant proteins (elongation factor-1α, arginine kinase, ES-15, ES-24, and ADP-ribosylation factor 1) of H. contortus on the maturation of goat monocyte-derived dendritic cells (md-DCs) were reported. Recombinant proteins were purified separately in E. coli expression and incubated with isolated goat peripheral blood mononuclear cells (PBMC). Immunofluorescence assay (IFA) results confirmed the binding of these molecules to the md-DC's surface as compared to control groups. In the flow cytometry analysis, recombinant proteins induced md-DC stimulation via the up-regulation of the expression of the costimulatory molecule (CD80) and MHC-II. Quantitative RT-PCR data showed a significant increase in the expression of specific genes of the WNT and toll-like receptor (TLR) signaling pathways. The result of ELISA indicated the higher levels of cytokine (IL-10, IL-12, IFN-γ, and TNF-α) secretion in the md-DC compared to the negative (pET-32a His-Tag) and blank (PBS) control groups. The data gives valuable support in the selection of potential antigens for future studies on the immunomodulation of the host against the infection of H. contortus.


Assuntos
Antígenos de Helmintos/imunologia , Células Dendríticas/imunologia , Cabras/imunologia , Haemonchus/imunologia , Receptores Toll-Like/genética , Regulação para Cima , Animais , Monócitos/imunologia , Receptores Toll-Like/metabolismo
11.
Parasitol Res ; 120(2): 579-592, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33438042

RESUMO

Dendritic cells play a crucial role in inducing antigen-specific immunity to pathogens. During host-parasite interaction, host immune response to the parasite molecules is considered essential for recognizing novel antigens for control strategies. Therefore, in the present study, chicken dendritic cells (DCs) (ChDCs), derived from spleens were used to evaluate their capacity to proliferate and differentiate autologous T lymphocytes in response to actin-depolymerizing factor from Eimeria tenella (EtADF). Immunoblot analysis showed that recombinant EtADF protein (rEtADF) was able to interact with rat anti-rEtADF antibodies. The immunofluorescence test confirmed rEtADF binding on ChDCs surface. Flow cytometric analysis revealed that phenotypes for MHCII, CD1.1, CD11c, CD80, and CD86 were increased in ChDCs after rEtADF treatment. qRT-PCR results indicated that ChDCs triggered TLR signaling in response to rEtADF, and suppressed Wnt signaling. Transcript levels of CD83, CCL5, and CCR7 in ChDCs were improved following rEtADF treatment. In addition, rEtADF promoted DC-directed T cell proliferation and differentiation of naïve T cells into CD3+/CD4+ T cells in DC/T cell co-incubation system. Cytokine analysis of rEtADF-pulsed ChDCs showed increased levels of IL-12 and IFN-γ, while IL-10 and TGF-ß remained unchanged. Moreover, rEtADF-treated ChDCs enhanced production of IFN-γ when incubated with T cells, and IL-4 secretion remained unchanged. Our findings indicted that rEtADF could facilitate the polarization of Th1 immune cells by triggering both host DCs and T cells. Our findings provide useful insights into future work aimed at anticoccidial vaccine strategies.


Assuntos
Coccidiose/prevenção & controle , Citocinas/imunologia , Destrina/metabolismo , Eimeria tenella/imunologia , Animais , Diferenciação Celular , Proliferação de Células , Galinhas , Coccidiose/imunologia , Coccidiose/parasitologia , Células Dendríticas/imunologia , Destrina/genética , Eimeria tenella/genética , Humanos , Imunização , Ativação Linfocitária , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Ratos , Baço/imunologia , Células Th1/imunologia
12.
Vaccines (Basel) ; 8(4)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276581

RESUMO

ADP-ribosylation factor 1 (HcARF1) is one of the Haemonchus contortus (H. contortus) excretory/secretory proteins involved in modulating the immune response of goat peripheral blood mononuclear cells (PBMC). Here, we evaluated the immunogenic potential of recombinant HcARF1 (rHcARF1) against H. contortus infection in Institute of Cancer Research (ICR) mice. Briefly, rHcARF1 was entrapped in poly (D, L-lactide-co-glycolide) (PLGA) and chitosan (CS) nanoparticles (NP) and injected into mice as a vaccine. Fifty-six ICR mice were assigned randomly into seven groups, with eight animals in each group, and they were vaccinated subcutaneously. At the end of the experiment (14th day), the blood and the spleen were collected from euthanized mice to detect lymphocyte proliferation, cytokine analysis, and the production of antigen-specific antibodies. Scanning electron microscope was used to determine the size, morphology, and zeta potential of nanoparticles. Flow cytometry was performed, which presented the increase percentages of CD4+ T cells (CD3e+CD4+), CD8+ T cells (CD3e+CD8+) and dendritic cells (CD11c+CD83+, CD11c+CD86+) in mice vaccinated with rHcARF1+PLGA NP. Immunoassay analysis show raised humoral (Immunoglobulin (Ig)G1, IgG2a, IgM) and cell-mediated immune response (Interleukin (IL)-4, IL-12, and IL-17, and Interferon (IFN)-γ) induced by rHcARF1+PLGA NP. Experimental groups that were treated with the antigen-loaded NP yield higher lymphocyte proliferation than the control groups. Based on these results, we could propose that the rHcARF1 encapsulated in NP could stimulate a strong immune response in mice rather than administering alone against the infection of H. contortus.

13.
Poult Sci ; 99(11): 5331-5343, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142449

RESUMO

Eimeria maxima possesses integral families of immunogenic constituents that promote differentiation of immune cells during host-parasite interactions. Dendritic cells (DCs) have an irreplaceable role in the modulation of the host immunity. However, the selection of superlative antigen with immune stimulatory efficacies on host DCs is lacking. In this study, 5 recombinant proteins of E. maxima (Em), including Em14-3-3, rhomboid family domain containing proteins (ROM) EmROM1 and EmROM2, microneme protein 2 (EmMIC2), and Em8 were identified to stimulate chicken splenic derived DCs in vitro. The cultured populations were incubated with recombinant proteins, and typical morphologies of stimulated DCs were obtained. DC-associated markers major histocompatibility complex class II, CD86, CD11c, and CD1.1, showed upregulatory expressions by flow cytometry assay. Immunofluorescence assay revealed that recombinant proteins could bind with the surface of chicken splenic derived DCs. Moreover, quantitative real-time PCR results showed that distinct gene expressions of Toll-like receptors and Wnt signaling pathway were upregulated after the coincubation of recombinant proteins with DCs. The ELISA results indicated that the DCs produced a significant higher level of interleukin (IL)-12 and interferon-γ secretions after incubation with recombinant proteins. While transforming growth factor-ß was significantly increased with rEmROM1, rEmROM2, and rEmMIC2 as compared to control groups, and IL-10 did not show significant alteration. Taken together, these results concluded that among 5 potential recombinant antigens, rEm14-3-3 could promote immunogenic functions of chicken splenic derived DCs more efficiently, which might represent an effective molecule for inducing the host Th1-mediated immune response against Eimeria infection.


Assuntos
Antígenos de Protozoários , Diferenciação Celular , Células Dendríticas , Eimeria , Imunidade , Baço , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/farmacologia , Diferenciação Celular/efeitos dos fármacos , Galinhas , Células Dendríticas/efeitos dos fármacos , Eimeria/química , Eimeria/genética , Feminino , Imunidade/efeitos dos fármacos , Baço/citologia
14.
Vet Res ; 51(1): 138, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203464

RESUMO

Dendritic cells (DCs) play a pivotal role to amplify antigen-specific immune responses. Antigens that sensitize T cells via antigen-presentation by DCs could enhance the capacity of host immunity to fight infections. In this study, we tested the immunogenic profiles of chicken DCs towards Glyceraldehyde-3-phosphate dehydrogenase from Eimeria acervulina (EaGAPDH). Immunoblot analysis showed that recombinant EaGAPDH (rEaGAPDH) protein was successfully recognized by rat sera generated against rEaGAPDH. Interaction and internalisation of rEaGAPDH by chicken splenic-derived DCs (chSPDCs) was confirmed by immunofluorescence analysis. Flow cytometry revealed that chSPDCs upregulated MHCII, CD1.1, CD11c, CD80, and CD86 cell-surface markers. Moreover, mRNA expressions of DC maturation biomarkers (CCL5, CCR7, and CD83) and TLR signalling genes (TLR15 and MyD88) were also upregulated whereas those of Wnt signalling were non-significant compared to negative controls. rEaGAPDH treatment induced IL-12 and IFN-γ secretion in chSPDCs but had no effect on IL-10 and TGF-ß. Likewise, DC-T cell co-culture promoted IFN-γ secretion and the level of IL-4 was unaffected. Proliferation of T cells and their differentiation into CD3+/CD4+ T cells were triggered in chSPDCs-T cells co-culture system. Taken together, rEaGAPDH could promote Th1 polarization by activating both host DCs and T cells and sheds new light on the role of this important molecule which might contribute to the development of new DCs-based immunotherapeutic strategies against coccidiosis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Galinhas/imunologia , Células Dendríticas/imunologia , Eimeria/fisiologia , Imunidade/genética , Proteínas de Protozoários/metabolismo , Células Th1/imunologia , Animais , Diferenciação Celular , Coccidiose/imunologia , Coccidiose/veterinária , Eimeria/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases , Doenças das Aves Domésticas/imunologia
15.
Animals (Basel) ; 10(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213045

RESUMO

Ephrin domain containing protein (EPH), a significant excreted and secreted product (ESPs) of Haemonchus contortus, has been identified to have antigenic functions. Over the past years, a new subset of CD4 + T named as T helper 9 cells that secrete interleukin-9 (IL-9) as a signature cytokine is associated with tumor immunity and allergy. Nonetheless, the understanding of immunomodulatory roles of EPH on goat Th9 and other immune cells remains limited. Herein, EPH from H. contortus (HcEPH) was cloned and expressed in pET-28a. Immunofluorescence assay (IFA) was carried-out to localize rHcEPH within H. contortus adult worms and to bind with goat peripheral blood mononuclear cells (PBMCs). Besides, the impact of rHcEPH on signature cytokine IL-9 expression in goat PBMCs was evaluated. Flow cytometry was employed to examine Th9 cells production and cell apoptosis. The results revealed success in the expression and localization of rHcEPH in surface of adult H. contortus gut sections. According to IFA analysis, the rHcEPH protein was capable to react precisely with anti-H. contortus antibodies. Further functional analysis showed that correlation between rHcEPH and host PBMCs significantly enhanced Th9 cell differentiation, IL-9 expression, cell apoptosis efficiency, and cell migration, whereas cell proliferation was suppressed significantly depending on the concentration. Our observations indicated that rHcEPH protein is linked to modulate the host immune cells and could enhance protective immunity by inducing Th9 responses.

16.
PLoS Negl Trop Dis ; 14(4): e0008218, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243446

RESUMO

CD4+ T cells play critical roles in mediating adaptive immunity to a variety of pathogens. Recently, new subset of CD4+T named as T helper 9 cells that express the prototypical interleukin-9 (IL-9) cytokine have been recognized in human and mice models during different parasitic infections. Haemonchus contortus is a gastrointestinal nematode of small ruminants which cause high mortality in young animals. During infection, Excretory and Secretary Products (ESPs) are released in the host body. No other study has reported yet on immunomodulatory dynamics of H. contortus ESPs on Th9 immune response in vitro or in vivo. In this study, immunomodulatory effects of ESPs (5, 10, 20, 40, 80; µg/mL) incubated with goat PBMCs on Th9 cells, IL-9 immune response and TGF-ß/Smad signaling regulator were evaluated in vitro. Moreover, for in vivo study, goats were infected with different doses (P-800, P-2400, and P-8000) of H. contortus infective larva (L3) and immunomodulatory effects on Th9 cells, IL-9 immune response and TGF-ß/Smad signaling regulator were evaluated at 7, 10, 14, 18, 21, 28 Days Post Infection (DPI). Flow cytometry was performed to evaluate the effects on Th9 cells and quantitative real time polymerase chain reaction was performed to evaluate the IL-9 cytokine transcription level. Additionally, fecal egg counting was also performed in parallel to confirm the infection. All goats were dewormed at 29 DPI and all experiments were also performed at 35 DPI, one week post deworming. The finding indicated that 10, 20, 40, 80 µg/mL concentration of ESPs incubated with goat PBMCs showed significant increase in the production of Th9 cells, signature cytokine IL-9 and expression of TGF-ß/Smad signaling regulator as compared to control group in vitro.All infected groups showed significant increase in production of Th9 cells and IL-9 cytokine and expression of TGF-ß/Smad key genes at 18, 21, and 28 DPI as compared to control group. Likewise, at 14 DPI, P-2400 and P-8000 groups showed significant increase in production of Th9 cells, IL-9 cytokine and expression of TGF-ß/Smad key genes. While at 10 DPI, production of Th9 cells and IL-9 was significantly increased in P-2400 & P-8000 groups, and at 7 DPI only P-8000 showed significantly increase in IL-9 production. No immunomodulatory effects were observed at 0 and 3 DPI. Additionally, significant gradually up-regulated key genes expression of TGF-ß/Smad signaling regulator in all infected groups confirmed the above results. After deworming, production of Th9 cells, associated immune response and expression of signaling regulator in each group were significantly decreased. Based on this study, it is concluded that Th9 immune response was induced during H. contortus infection in goat by up-regulation of TGF-ß/Smad signaling key genes.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Hemoncose/imunologia , Interleucina-9/imunologia , Fator de Crescimento Transformador beta/imunologia , Imunidade Adaptativa , Animais , Feminino , Cabras , Haemonchus , Masculino , Contagem de Ovos de Parasitas , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia
17.
Microb Pathog ; 143: 104162, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32194180

RESUMO

Dendritic cells (DCs) are key linkages between innate immunity and acquired immunity. The antigens that promote the functions of DCs might be the effective candidates of novel vaccine. In this research, the ability of ubiquitin-conjugating enzyme (UCE), a recognized common antigens among chicken Eimeria species, to stimulate DCs of chickens were evaluated. We cloned UCE gene from Eimeria maxima (EmUCE), and its protein expression was confirmed by SDS-PAGE and western-blot. Immunofluorescence assay confirmed the binding of rEmUCE on the surface of chicken splenic-derived DCs (ChSP-DCs). Flow cytometric analysis showed that rEmUCE-treated ChSP-DCs increased MHCII, CD1.1, CD11c, CD80, and CD86 phenotypes. qRT-PCR indicated that transcript levels of maturation markers CCL5, CCR7, and CD83 in ChSP-DCs were upregulated in response to rEmUCE. Following rEmUCE treatment, chSP-DCs activated TLR signaling and inhibited Wnt signaling. Moreover, rEmUCE promoted DC-mediated T-cell proliferation in DC/T-cell co-incubation. Interestingly, CD3+/CD4+ T-cells were significantly enhanced when rEmUCE-treated chSP-DCs were co-incubated with T-cells. Cytokine secretion pattern of rEmUCE-stimulated ChSP-DCs revealed that the production of IL-12 and IFN-γ was increased whereas IL-10 and TGF-ß were unchanged. Likewise, the co-incubation of ChSP-DCs with T-cells indicated increased production of IFN-γ but not IL-4. Collectively, rEmUCE could polarize DCs to immunogenic phenotype and shift the immune cells towards Th1 response. Our observations provide valuable insight for future research aimed at vaccine development against avian coccidiosis.


Assuntos
Células Dendríticas/metabolismo , Eimeria/enzimologia , Proteínas de Protozoários/metabolismo , Células Th1/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Diferenciação Celular , Galinhas , Clonagem Molecular , Células Dendríticas/fisiologia , Eimeria/genética , Citometria de Fluxo , Imunofluorescência , Proteínas de Protozoários/genética , Proteínas Recombinantes , Análise de Sequência de DNA , Células Th1/fisiologia , Enzimas de Conjugação de Ubiquitina/genética
18.
BMC Vet Res ; 16(1): 36, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013987

RESUMO

BACKGROUND: Haemonchus contortus (H. contortus) is one of the most important parasites that cause huge economic losses to small ruminant industry worldwide. Effective prognosis and treatment depend upon the early diagnosis of H. contortus infection. To date, no widely-approved methods for the identification of prepatent H. contortus infection are available to identify prepatent H. contortus infection properly. The aim of this study was to evaluate the diagnostic potential of recombinant cold shock H. contortus protein (rHc-CS) during early and late infections of H. contortus in goat. RESULTS: Purified rHc-CS exhibited a clear band, with a molecular weight about 38 kDa. H. contortus eggs were not detected by fecal egg count technique from feces collected at 0 to 14 days post infection (D.P.I). However, eggs were detected at 21, 28 and 35 D.P.I. Hence, results of immunoblotting assay showed specific anti rHc-CS antibody detection in all goat sera collected at early stage (14 D.P.I) and late stage (21-103 D.P.I) of H. contortus infection. Furthermore, no cross reactivity was observed against Trichinella spiralis, Fasciola hepatica and Toxoplasma gondii or uninfected goats. Among several evaluated rHc-CS indirect-ELISA format variables, favorable antigen coating concentration was found 0.28 µg/well at 37 °C 1 h and overnight at 4 °C. Moreover, optimum dilution ratio of serum and rabbit anti-goat IgG was recorded as 1:100 and 1:4000, respectively. The best blocking buffer was 5% Bovine Serum Albumin (BSA) while the best time for blocking, serum incubation and TMB reaction were recorded as 60, 120 and 10 min, respectively. The cut-off value for positive and negative interpretation was determined as 0.352 (OD450). The diagnostic specificity and sensitivity of the rHc-CS, both were recorded as 100%. CONCLUSION: These results validated that rHc-CS is a potential immunodiagnostic antigen to detect the specific antibodies during early and late H. contortus infections in goat.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Doenças das Cabras/parasitologia , Hemoncose/veterinária , Haemonchus/imunologia , Animais , Resposta ao Choque Frio , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Doenças das Cabras/diagnóstico , Doenças das Cabras/imunologia , Cabras , Hemoncose/diagnóstico , Hemoncose/imunologia , Contagem de Ovos de Parasitas/veterinária , Domínios Proteicos , Ratos , Proteínas Recombinantes/imunologia
19.
Animals (Basel) ; 10(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952259

RESUMO

Haemonchus contortus is an important gastrointestinal nematode of small ruminants that causes significant mortality in goats worldwide. Diagnosis of this infection mainly depends on the evaluation of clinical signs and fecal examination. However, limitations often occur in early or mild infections. For this purpose, serological diagnosis seems to be more accurate and reliable. Ras domain-containing protein (Ras) is one of H. contortus's excretory and secretory products (ESPs) that can be isolated from different larval stages of the nematode. In this study, the recombinant H. contortus Ras domain-containing protein (rHcRas) was expressed and purified and its diagnostic potential was evaluated. Reactions between rHcRas and goat sera were tested using Western blotting (WB). The results showed that rHcRas could be recognized by sera as early as 14 days post infection (DPI), and antibodies against rHcRas in infected goats could be maintained for over 89 days. No reaction was found between rHcRas and antibodies against Trichinella spiralis, Fasciola hepatica, or Toxoplasma gondii. An indirect enzyme-linked immunosorbent assay (ELISA) was produced based on rHcRas. The optimal coating antigen (157 ng of rHcRas/well) and serum dilutions (1:50) were determined via checkerboard titration. Indirect ELISA based on rHcRas showed 87.5% sensitivity and 90.6% specificity. The cut-off values for this experiment were determined to be 0.324 (positive) and 0.273 (negative), respectively, and the variation coefficient (CV) was less than 15%. The results of the indirect ELISA in-field examination showed that 17.6% (9/51) of the goats were infected with H. contortus, higher than the fecal examination results (15.7%, 8/51). When compared the results of the indirect ELISA and necropsy testing, 98.0% (50/51) consistency was found. These results indicated that rHcRas was a potential antigen for the diagnosis of H. contortus infection in goats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA