Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
Opt Mater (Amst) ; 1472024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38283740

RESUMO

The metal-ligand complex tris(2,2'-bipyridine)ruthenium(II) chloride (Ru probe) displays a broad emission spectrum ranging from 540 to 730 nm. The emission spectra of Ru probe were measured when placed on top of a one-dimensional photonic crystal (1DPC), which supports both Bloch surface wave (BSW) and internal modes for wavelengths below 640 nm and only internal modes above 640 nm. The S-polarized emission spectra, with the electric vector parallel to the 1DPC surface, were found to be strongly dependent on the observation angle through the coupling prism. Also, the usual single broad-emission spectrum of Ru probe on glass was converted into two or more narrow-band-spectrum on the 1DPC, with emission band maxima dependent on the observation angle. The two S-polarized emission band peaks for Ru probe were found to be consistent with coupling to the BSW and first internal mode (IM1) of the 1DPC. The same spectral shifts and changes in emission maxima were observed by using Kretschmann and reverse Kretschmann illuminations. As the coupling requires the emitter to be in proximity with the photonic structure, we calculated near- and far-field distributions of a dipole directly located on the 1DPC surface. Finite-Difference Time-Domain (FDTD) simulations were performed to confirm fluorophore coupling to the BSW and internal modes (IMs). Both the measured and simulated results showed that IM coupled emission is significant. Coupling to the IM mode occurred at longer wavelengths where the 1DPC did not support a BSW. These results demonstrate that a simple Bragg grating, without a BSW mode, can be used for detection of surface-bound fluorophores.

2.
J Immunol ; 210(9): 1419-1427, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36946775

RESUMO

TLR5, which is activated by flagellin, plays an important role in initiating immune response to a broad spectrum of motile bacterial pathogens. TLRs induce intracellular signaling via dimerization of their TIR domains followed by adapter recruitment through multiple interactions of receptor and adapter TIRs. Here, a library of cell-permeable decoy peptides derived from the TLR5 TIR was screened for TLR5 signaling inhibition in the HEK-Blue-mTLR5 reporter cell line. The peptide demonstrating the strongest inhibition, 5R667, corresponded to the second helix of the region between the third and fourth ß-strands (helix C″). In addition to the TLR5-induced cytokine expression, 5R667 inhibited cytokine expression elicited by TLR4, TLR2, and TLR9. 5R667 also suppressed the systemic cytokine induction elicited by LPS administration in mice. 5R667 binding specificity was studied by time-resolved fluorescence spectroscopy in a cell-based assay. 5R667 demonstrated a multispecific binding pattern with respect to TIR domains: It bound TIRs of TLR adapters of the MyD88-dependent pathway, Toll/interleukin-1 receptor domain-containing adapter protein/MyD88 adapter-like (TIRAP) and MyD88, and also the TIR of TLR5. TR667, the peptide derived from the TIRAP region, which is structurally homologous to 5R667, demonstrated binding and inhibitory properties similar to that of 5R667. The surface-exposed residues within TIR regions represented by 5R667 and TR667 form motifs, which are nearly 90% conserved in vertebrate evolution and are distinctive of TLR5 and TIRAP TIR domains. Thus, we have identified an evolutionary conserved adapter recruitment motif within TLR5 TIR, the function of which can be inhibited by selective cell-permeable decoy peptides, which can serve as pan-specific TLR inhibitors.


Assuntos
Fator 88 de Diferenciação Mieloide , Receptor 5 Toll-Like , Animais , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Peptídeos/metabolismo , Citocinas/metabolismo , Receptores de Interleucina-1/metabolismo
3.
J Phys Chem C Nanomater Interfaces ; 127(25): 12084-12095, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38274198

RESUMO

Surface plasmon-coupled emission (SPCE) has been well studied for its coupled, directional, and enhanced P-polarized radiation due to the interactions of fluorophores with surface plasmon polaritons (SPPs) on thin metal films. Such surface plasmon polariton-assisted directional fluorescence has various applications in biosensing. Herein, we demonstrate 2-aminopurine (2AP, a UV-absorbing and -emitting fluorophore) emission coupling to modes in aluminum-based plasmon-coupled waveguides (Al-PCWs). Directional emission from 2-aminopurine on plasmon-coupled waveguides was observed at specific angles as P-polarized SPCE and/or as P- or S-polarized waveguide-coupled emission (WGCE). All S-polarized waveguide modes showed clear angularly resolved emission as compared to that of P-polarized surface plasmon-coupled emission or P-polarized waveguide-coupled emission. The coupling angles, efficiencies, and polarizations of the modes were sensitive to the optical properties and overall dimensions of the top dielectric layer in PCWs. The effective plasmon-coupled waveguide can consist of either a thin probe-containing layer on top of the undoped silica film, or a single dielectric PVA layer with probes distributed throughout the film on the Al layer. The former structures with probes confined to the top of the undoped silica layer showed much higher angular resolutions and coupling efficiencies, as well as mode-dependent changes in lifetimes. These results demonstrate that the plasmon and waveguide modes can be used for selective detection of surface-bound and bulk fluorophores, simultaneously.

4.
Chemosensors (Basel) ; 11(8)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38274567

RESUMO

In this paper, a method is described to perform ion concentration measurements on both sides of an inserted contact lens, without physical contact with the eye or the contact lens. The outer surface of an eye is covered with a tear film that has multiple layers. The central aqueous layer contains electrolytes and proteins. When a contact lens is inserted, it becomes localized in the central layer, which creates two layers known as the pre-lens tear film (PLTF) and the post-lens tear film (PoLTF). The PoLTF is in direct contact with the sensitive corneal epithelial cells which control electrolyte concentrations in tears. It is difficult to measure the overall electrolyte concentration in tears because of the small 7 µL volume of bulk tears. No methods are known, and no method has been proposed, to selectively measure the concentrations of electrolytes in the smaller volumes of the PLTF and the PoLTF. In this paper, we demonstrate the ability to localize fluorophores on each side of a contact lens without probe mixing or diffusion across the lens. We measured the concentration of sodium in the region of the PoLTF using a sodium-sensitive fluorophore positioned on the inner surface of a contact lens. The fluorescence measurements do not require physical contact and are mostly independent of eye motion and fluorophore concentration. The method is generic and can be combined with ion-sensitive fluorophores for the other electrolytes in tears. Instrumentation for non-contact measurements is likely to be inexpensive with modern opto-electronic devices. We expect these lenses to be used for measurements of other ions in the PLTF and the PoLTF, and thus become useful for both research and in the diagnosis of infections, keratitis and biomarkers for diseases.

5.
Mol Carcinog ; 61(1): 19-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610184

RESUMO

Type 2 transglutaminase (TG2) functions as an important cancer cell survival protein in a range of cancers including epidermal squamous cell carcinoma. TG2 exists in open and closed conformations each of which has a distinct and mutually exclusive activity. The closed conformation has GTP-binding/GTPase activity while the open conformation functions as a transamidase to catalyze protein-protein crosslinking. GTP-binding/GTPase activity is required for TG2 maintenance of the aggressive cancer phenotype. Thus, identifying agents that convert TG2 from the closed to the open GTP-binding/GTPase inactive conformation is an important cancer prevention/treatment strategy. Sulforaphane (SFN) is an important diet-derived cancer prevention agent that is known to possess a reactive isothiocyanate group and has potent anticancer activity. Using a biotin-tagged SFN analog (Biotin-ITC) and kinetic analysis we show that SFN covalently and irreversibly binds to recombinant TG2 to inhibit transamidase activity and shift TG2 to an open/extended conformation, leading to a partial inhibition of GTP binding. We also show that incubation of cancer cells or cancer cell extract with Biotin-ITC results in formation of a TG2/Biotin-ITC complex and that SFN treatment of cancer cells inhibits TG2 transamidase activity and shifts TG2 to an open/extended conformation. These findings identify TG2 as a direct SFN anticancer target in epidermal squamous cell carcinoma.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Isotiocianatos/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase/química , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Sulfóxidos/farmacologia , Animais , Antineoplásicos/química , Sítios de Ligação , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Humanos , Isotiocianatos/química , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Neoplasias Cutâneas/metabolismo , Sulfóxidos/química , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nat Commun ; 12(1): 6835, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824261

RESUMO

A limitation of standard brightfield microscopy is its low contrast images, especially for thin specimens of weak absorption, and biological species with refractive indices very close in value to that of their surroundings. We demonstrate, using a planar photonic chip with tailored angular transmission as the sample substrate, a standard brightfield microscopy can provide both darkfield and total internal reflection (TIR) microscopy images with one experimental configuration. The image contrast is enhanced without altering the specimens and the microscope configurations. This planar chip consists of several multilayer sections with designed photonic band gaps and a central region with dielectric nanoparticles, which does not require top-down nanofabrication and can be fabricated in a larger scale. The photonic chip eliminates the need for a bulky condenser or special objective to realize darkfield or TIR illumination. Thus, it can work as a miniaturized high-contrast-imaging device for the developments of versatile and compact microscopes.


Assuntos
Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Desenho de Equipamento , Microscopia , Nanopartículas , Fótons , Ressonância de Plasmônio de Superfície
7.
J Opt Soc Am B ; 38(5): 1579-1585, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34385758

RESUMO

The guided-modes of Bloch surface waves, such as the transverse electric modes (TE00 and TE01 modes), can simultaneously exist in a low-refractive-index ridge waveguide with subwavelength thickness that are deposited on an all dielectric one-dimension photonic crystal. By using the finite difference frequency domain method, coupled mode theory and finite-difference time-domain method, the conversion between the guided-modes has been investigated. This conversion can be realized in a broadband wavelength with surface pattern of this low-index ridge. This conversion is useful for developing lab-on-a-chip photonic devices, such as a mode converter that can maintain the output mode purity over 90% with working wavelength ranging from 590 to 680 nm, and a power splitter that can maintain the splitting ratio over 8:2 with wavelength ranging from 530 to 710 nm.

8.
J Opt ; 23(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33936580

RESUMO

The coupling of fluorescence with surface electromagnetic modes, such as surface plasmons on thin metal films or Bloch surface waves (BSW) on truncated one-dimensional photonic crystals (1DPC), are presently utilized for many fluorescence-based applications. In addition to the surface wave, 1DPCs also support other electromagnetic modes that are confined within the 1DPC structure. These internal modes (IMs) have not received much attention for fluorescence coupling due to lack of spatial overlap of their electric fields with the surface bound fluorophores. However, our recent studies have indicated that the fluorescence coupling with IMs occurs quite efficiently. This observed internal mode-coupled emission (IMCE) is (similar to BSW-coupled emission) indeed wavelength dependent, directional and S-polarized. In this paper, we have carried out back-focal plane (BFP) imaging to reveal that the IMs of 1DPCs can couple with surface bound excited dye molecules, with or without a BSW mode presence. Depending on the emission wavelength, the coupling is observed with BSW and IMs or only IMs of the 1DPC structure. The experimental results are well matching with numerical simulations. The occurrence of IMCE regardless of the availability of BSWs removes the dependence on just the surface mode for obtaining coupled emission from 1DPCs. The observation of IMCE is expected to widen the scope of 1DPCs for surface-based fluorescence sensing and assays.

9.
Sens Actuators B Chem ; 3312021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33551571

RESUMO

The ability to measure all the electrolyte concentrations in tears would be valuable in ophthalmology for research and diagnosis of dry eye disease (DED) and other ocular pathologies. However, tear samples are difficult to collect and analyze because the total volume is small and the chemical composition changes rapidly. Measurements of electrolytes in tears is challenging because typical clinical assays for proteins and other biomarkers cannot be used to detect ion concentrations tears. Here, we report the contact lens which is sensitive to sodium ion (Na+), one of the dominant electrolytes in tears. The Na ions in tears is diagnostic for DED. Three sodium-sensitive fluorophores (SG-C16, SG-LPE and SG-PL) were synthesized by derivatizing the sodium green with 1-hexadecyl amine, 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine or poly-L-lysine, respectively. These probes were bound to modern silicone hydrogel (SiHG) contact lens, Biofinity from Cooper Vision. Doped lenses were tested for sodium ion dependent spectral properties of probes within the contact lens. The probes displayed changes in intensity and lifetime in response to Na+ concentration, were completely reversible, no significant probe wash-out from the lenses, were not affected by proteins in tears and were not removed after repeated washing. These results are the first step to our long-term goal, which is a lens sensitive to all the electrolytes in tears. We presented design, synthesis and implementation of three new sodium sensitive probes within a silicon hydrogel lens. Contact lenses to measure the other electrolytes in tears can be developed using the same approach by synthesis and testing of new ion-sensitive fluorophores.

10.
Nanophotonics ; 10(3): 1099-1106, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35330809

RESUMO

When an ultrathin silver nanowire with a diameter less than 100 nm is placed on a photonic band gap structure, surface plasmons can be excited and propagate along two side-walls of the silver nanowire. Although the diameter of the silver nanowire is far below the diffraction limit, two bright lines can be clearly observed at the image plane by a standard wide-field optical microscope. Simulations suggest that the two bright lines in the far-field are caused by the unique phase distribution of plasmons on the two side-walls of the silver nanowire. Combining with the sensing ability of surface plasmons to its environment, the configuration reported in this work is capable of functioning as a sensing platform to monitor environmental changes in the near-field region of this ultrathin nanowire.

11.
Anal Biochem ; 608: 113902, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800702

RESUMO

Rapid and non-invasive measurement of hydration status is medically important because even mild levels of dehydration can have a significant impact on physical and cognitive performance. Despite the potential value of determining whole-body hydration based on the electrolytes found in tears, very few tests are available. An area of intense interest is the development of a contact lens which could measure ion concentrations in tears, specifically that of sodium (Na+) and chloride (Cl-) ions, the dominant electrolytes in blood plasma and tears. Here, we describe a method to make fluorescent contact lenses which allow determination of Na+ and Cl- ion concentrations in tears. Fluorophores known to be sensitive to Na+ and Cl- were derivatized to bind non-covalently to two commercially-available silicone hydrogel (SiHG) contact lenses-the Biofinity (Comfilcon A) or MyDay (Stenfilcon A) lenses. The sodium- and chloride-sensitive fluorophores displayed spectral changes in the physiological range for Na+ and Cl- ions in tears. The lenses for both Na+ and Cl- ions were completely reversible. The sodium responses were not sensitive to protein interference including human lysozyme, human serum albumin and mucin type 2. The chloride sensitivity was similar with both lenses, but the sodium-sensitive range was different in the Biofinity and MyDay lenses. We also fabricated a lens with both the Na+ and Cl- probes in a single MyDay lens resulting in a contact lens that independently measured Na+ and Cl- concentrations without physical separation of the fluorophores. Our findings indicated that a sodium and chloride-sensitive contact lens (NaCl-lens) could be used for rapid non-invasive detection of whole-body hydration, as well as associated diseases or other infections.


Assuntos
Técnicas Biossensoriais/métodos , Cloretos/análise , Corantes Fluorescentes/química , Sódio/análise , Lágrimas/química , Água Corporal/fisiologia , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Íons/análise , Compostos Orgânicos/química , Polilisina/química , Quinolinas/química , Silicones/química , Espectrometria de Fluorescência/métodos , Água/análise
12.
ACS Nano ; 14(7): 9136-9144, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32649174

RESUMO

The growth in aerosol particles caused by water uptake during increasing ambient relative humidity alters the physical and chemical properties of aerosols, which then affects public health, atmospheric chemistry, and the Earth's climate. The temporal resolution and sensitivity of current techniques are not sufficient to measure the growth dynamics of single aerosol nanoparticles. Additionally, the specific time required for phase transition from solid to aqueous has not been measured. Here, we describe a label-free photonic microscope that uses the Bloch surface waves as the illumination source for imaging and sensing to provide real-time measurements of the hygroscopic growth dynamics of a single aerosol (diameter <100 nm) containing the main components of air pollution. This specific time can be measured for both pure and mixed aerosols, showing that organics will delay the phase transition. This photonic microscope can be extended to investigate physicochemical reactions of various aerosols, and then knowing this specific time will be favorable for understanding the reaction kinetics among single aerosols and the surrounding medium.

13.
Nanoscale ; 12(3): 1688-1696, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31894803

RESUMO

Metallic particles are promising for applications in various areas, including optical sensing, imaging and electric field enhancement-induced optical and thermal effects. The ability to trap or transport these particles stably will be important in these applications. However, while traditional optical tweezers can trap metallic Rayleigh particles easily, it is difficult to trap metallic mesoscopic/Mie particles because of the strong scattering forces that come from the far-field trapping laser beam. Here we demonstrate that metallic particles can be trapped stably using focused Bloch surface waves that propagate in the near-field region of a dielectric multilayer structure with a photonic band gap. Focused Bloch surface waves can be excited efficiently using an annular beam with azimuthal polarization and a high-numerical-aperture objective. Numerical simulations were performed to calculate the optical forces loaded on a gold particle by focused Bloch surface waves and the results were consistent with those of the experimental observations.

14.
Ann Phys ; 532(4)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34113044

RESUMO

Near-field optical trapping can be realized with focused evanescent waves that are excited at the water-glass interface due to the total internal reflection, or with focused plasmonic waves excited on the water-gold interface. Herein, the performance of these two kinds of near-field optical trapping techniques is compared using the same optical microscope configuration. Experimental results show that only a single-micron polystyrene bead can be trapped by the focused evanescent waves, whereas many beads are simultaneously attracted to the center of the excited region by focused plasmonic waves. This difference in trapping behavior is analyzed from the electric field intensity distributions of these two kinds of focused surface waves and the difference in trapping behavior is attributed to photothermal effects due to the light absorption by the gold film.

15.
Phys Rev Appl ; 13(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34113692

RESUMO

Dielectric multilayer photonic-band-gap structures, called one-dimensional photonic crystals (1DPCs), have drawn considerable attention in the fields of physics, chemistry, and biophotonics. Here, experimental results verify the feasibility of a 1DPC working as a substrate for switchable manipulations of colloidal microparticles. The optically induced thermal convective force on a 1DPC can assemble colloidal particles that are dispersed in a water solution, while the photonic scattering force on the same 1DPC caused by propagating evanescent waves can guide these particles. Additionally, in the 1DPC, one internal mode can be excited that has seldom been noticed previously. This mode shows an ability to assemble particles over large areas even when the incident power is low. The assembly and guidance of colloidal particles on the 1DPC are switchable just through tuning the polarization and angle of the incident laser beam. Numerical simulations are carried out, which are consistent with these experimental observations.

16.
J Phys Chem C Nanomater Interfaces ; 124(41): 22743-22752, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34306293

RESUMO

Multilayer structures with two dielectrics having different optical constants and no structural features in the x-y plane can display photonic band gaps (PBGs) and are called one-dimensional photonic crystals (1DPCs). If the top layer thickness is carefully selected, the electromagnetic energy can be trapped at the top surface. These highly enhanced fields are called Bloch surface waves (BSWs). The BSW resonance angles are sensitive to the dielectric constant above the top dielectric layer. As a result, BSW structures have been used for surface plasmon resonance-like measurements without the use of a metal film. However, the emphasis on surface-localized BSWs has resulted in limited interest in fluorophore interactions with other optical modes of 1DPCs or Bragg gratings without the different thickness top layer. Herein, three different fluorescent probes were used to cover the short, center, and long wavelengths of the PBG. We demonstrate efficient coupling of fluorophores to both the BSW and internal modes (IMs) of a 1DPC. Coupling to the IM is expected to be low because of the micron-scale distances between the fluorophores and IM, which exists inside the Bragg gratings. At different wavelengths or observation angles, the IM-coupled emission (IMCE) can occur with the first three modes of the multilayer. This coupling is not dependent on a BSW mode. IMCE was also observed for a monolayer of fluorophore-labeled protein. IMCE enables sensitive detection of surface-bound fluorophores. Applications are anticipated in high sensitivity detection and super-resolution imaging.

17.
ACS Photonics ; 7(3): 774-783, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33644254

RESUMO

Axis-symmetric grooves milled in metallic slabs have been demonstrated to promote the transfer of Orbital Angular Momentum (OAM) from far- to near-field and vice versa, thanks to spin-orbit coupling effects involving Surface Plasmons (SP). However, the high absorption losses and the polarization constraints, which are intrinsic in plasmonic structures, limit their effectiveness for applications in the visible spectrum, particularly if emitters located in close proximity to the metallic surface are concerned. Here, an alternative mechanism for vortex beam generation is presented, wherein a free-space radiation possessing OAM is obtained by diffraction of Bloch Surface Waves (BSWs) on a dielectric multilayer. A circularly polarized laser beam is tightly focused on the multilayer surface by means of an immersion optics, such that TE-polarized BSWs are launched radially from the focused spot. While propagating on the multilayer surface, BSWs exhibit a spiral-like wavefront due to the Spin-Orbit Interaction (SOI). A spiral grating surrounding the illumination area provides for the BSW diffraction out-of-plane and imparts an additional azimuthal geometric phase distribution defined by the topological charge of the spiral structure. At infinity, the constructive interference results into free-space beams with defined combinations of polarization and OAM satisfying the conservation of the Total Angular Momentum, based on the incident polarization handedness and the spiral grating topological charge. As an extension of this concept, chiral diffractive structures for BSWs can be used in combination with surface cavities hosting light sources therein.

18.
J Leukoc Biol ; 108(6): 1697-1706, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31642126

RESUMO

TLRs sense a broad range of microbial molecules and initiate antimicrobial immune response. The members of the TLR family use cytoplasmic Toll/interleukin-1R homology (TIR) domain to initiate intracellular signaling. The activated TLRs dimerize their TIRs and recruit adapter proteins to the dimer, through multiple interactions of receptor and adapter TIR domains. Although TLRs play an essential role in innate immunity, the aberrant TLR signaling may cause pathogenic inflammation. This study has screened a library of cell-permeable decoy peptides (CPDPs) derived from the TLR7 TIR for interference with TLR7 signaling and identified new CPDPs that target the TLR7 signalosome assembly. Peptides 7R1, 7R6, 7R9, and 7R11 inhibited the TLR7-induced signaling in murine and human macrophages. The most potent inhibitory peptide of the four, 7R11, significantly reduced the systemic cytokine levels elicited by administration of a TLR7 agonist to mice. TLR7 TIR surface regions that correspond to inhibitory peptides generally corresponded to four TIR sites that mediate signalosome assembly for other TLRs. The cell-based Förster resonance energy transfer/fluorescence lifetime imaging confirmed that 7R9 and 7R11 interact with adapter TIRs. These findings clarify the molecular mechanisms that trigger the adapter recruitment to activated TLR7 and suggest that 7R9 and 7R11 have a significant translational potential as candidate or lead therapeutics for treatment of TLR7-related inflammatory diseases.


Assuntos
Citocinas/imunologia , Macrófagos/imunologia , Glicoproteínas de Membrana/agonistas , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/agonistas , Animais , Humanos , Glicoproteínas de Membrana/imunologia , Camundongos , Peptídeos/química , Transdução de Sinais/imunologia , Receptor 7 Toll-Like/imunologia
19.
J Phys Chem C Nanomater Interfaces ; 123(2): 1413-1420, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31681454

RESUMO

Metal nanostructures (such as plasmonic antennas) have been widely demonstrated to be excellent devices for beaming and sorting the fluorescence emission. These effects rely on the constructive scattering or diffraction from different elements (such as metal corrugations or nanorings) of the nanostructures. However, subwavelength-size nanoholes, without nearby nanoscale features, results in an angularly dispersed emission from the distal surface. Herein, we demonstrate for the first time the emission redirection capabilities of a single isolated nanoaperture milled in a thick silver film deposited on a dielectric multilayer. Specifically, we show that a dye dissolved in ethanol filling in the nanoaperture can couple to Tamm Plasmon Polariton (TPP) modes of the structure. Due to the small in-plane wavevectors of the TPPs, the fluorescence from Tamm-coupled dyes within the nanoaperture is emitted normally to the sample surface, with a minimum angular width of about 12.54°. This kind of fluorescence manipulation has proven to be effective with various nanoaperture shapes, such as circles, squares, and triangles. Our work is also the first experimental demonstration of lateral coupling of fluorophores with TPPs in nanoholes, with potential applications in bioanalysis and biosciences.

20.
Sci Adv ; 5(3): eaav5335, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30944860

RESUMO

Surface plasmon resonance microscopy (SPRM) with single-direction illumination is a powerful platform for biomedical imaging because of its wide-field, label-free, and high-surface-sensitivity imaging capabilities. However, two disadvantages prevent wider use of SPRM. The first is its poor spatial resolution that can be as large as several micrometers. The second is that SPRM requires use of metal films as sample substrates; this introduces working wavelength limitations. In addition, cell culture growth on metal films is not as universally available as growth on dielectric substrates. Here we show that use of azimuthal rotation illumination allows SPRM spatial resolution to be enhanced by up to an order of magnitude. The metal film can also be replaced by a dielectric multilayer and then a different label-free surface-sensitive photonic microscopy is developed, which has more choices in terms of the working wavelength, polarization, and imaging section, and will bring opportunities for applications in biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA