Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 2497-2506, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38966680

RESUMO

N-glycosylation can have a profound effect on the quality of mAb therapeutics. In biomanufacturing, one of the ways to influence N-glycosylation patterns is by altering the media used to grow mAb cell expression systems. Here, we explore the potential of machine learning (ML) to forecast the abundances of N-glycan types based on variables related to the growth media. The ML models exploit a dataset consisting of detailed glycomic characterisation of Anti-HER fed-batch bioreactor cell cultures measured daily under 12 different culture conditions, such as changes in levels of dissolved oxygen, pH, temperature, and the use of two different commercially available media. By performing spent media quantitation and subsequent calculation of pseudo cell consumption rates (termed media markers) as inputs to the ML model, we were able to demonstrate a small subset of media markers (18 selected out of 167 mass spectrometry peaks) in a Chinese Hamster Ovary (CHO) cell cultures are important to model N-glycan relative abundances (Regression - correlations between 0.80-0.92; Classification - AUC between 75.0-97.2). The performances suggest the ML models can infer N-glycan critical quality attributes from extracellular media as a proxy. Given its accuracy, we envisage its potential applications in biomaufactucuring, especially in areas of process development, downstream and upstream bioprocessing.

2.
Trends Biotechnol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38548556

RESUMO

Genome-scale metabolic models (GEMs) of Chinese hamster ovary (CHO) cells are valuable for gaining mechanistic understanding of mammalian cell metabolism and cultures. We provide a comprehensive overview of past and present developments of CHO-GEMs and in silico methods within the flux balance analysis (FBA) framework, focusing on their practical utility in rational cell line development and bioprocess improvements. There are many opportunities for further augmenting the model coverage and establishing integrative models that account for different cellular processes and data for future applications. With supportive collaborative efforts by the research community, we envisage that CHO-GEMs will be crucial for the increasingly digitized and dynamically controlled bioprocessing pipelines, especially because they can be successfully deployed in conjunction with artificial intelligence (AI) and systems engineering algorithms.

3.
Microb Cell Fact ; 23(1): 63, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402186

RESUMO

BACKGROUND: Yeasts exhibit promising potential for the microbial conversion of crude glycerol, owing to their versatility in delivering a wide range of value-added products, particularly lipids. Sweetwater, a methanol-free by-product of the fat splitting process, has emerged as a promising alternative feedstock for the microbial utilization of crude glycerol. To further optimize sweetwater utilization, we compared the growth and lipid production capabilities of 21 oleaginous yeast strains under different conditions with various glycerol concentrations, sweetwater types and pH. RESULTS: We found that nutrient limitation and the unique carbon composition of sweetwater boosted significant lipid accumulation in several strains, in particular Rhodosporidium toruloides NRRL Y-6987. Subsequently, to decipher the underlying mechanism, the transcriptomic changes of R. toruloides NRRL Y-6987 were further analyzed, indicating potential sugars and oligopeptides in sweetwater supporting growth and lipid accumulation as well as exogenous fatty acid uptake leading to the enhanced lipid accumulation. CONCLUSION: Our comparative study successfully demonstrated sweetwater as a cost-effective feedstock while identifying R. toluroides NRRL Y-6987 as a highly promising microbial oil producer. Furthermore, we also suggested potential sweetwater type and strain engineering targets that could potentially enhance microbial lipid production.


Assuntos
Glicerol , Leveduras , Glicerol/química , Ácidos Graxos/química , Carbono , Biocombustíveis
4.
Comput Struct Biotechnol J ; 21: 3736-3745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547082

RESUMO

The biomass equation is a critical component in genome-scale metabolic models (GEMs): it is used as the de facto objective function in flux balance analysis (FBA). This equation accounts for the quantities of all known biomass precursors that are required for cell growth based on the macromolecular and monomer compositions measured at certain conditions. However, it is often reported that the macromolecular composition of cells could change across different environmental conditions and thus the use of the same single biomass equation in FBA, under multiple conditions, is questionable. Herein, we first investigated the qualitative and quantitative variations of macromolecular compositions of three representative host organisms, Escherichia coli, Saccharomyces cerevisiae and Cricetulus griseus, across different environmental/genetic variations. While macromolecular building blocks such as RNA, protein, and lipid composition vary notably, changes in fundamental biomass monomer units such as nucleotides and amino acids are not appreciable. We also observed that flux predictions through FBA is quite sensitive to macromolecular compositions but not the monomer compositions. Based on these observations, we propose ensemble representations of biomass equation in FBA to account for the natural variation of cellular constituents. Such ensemble representations of biomass better predicted the flux through anabolic reactions as it allows for the flexibility in the biosynthetic demands of the cells. The current study clearly highlights that certain component of the biomass equation indeed vary across different conditions, and the ensemble representation of biomass equation in FBA by accounting for such natural variations could avoid inaccuracies that may arise from in silico simulations.

5.
Cell Rep ; 41(10): 111735, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476869

RESUMO

Lactic acid bacteria (LAB) are well known to elicit health benefits in humans, but their functional metabolic landscapes remain unexplored. Here, we analyze differences in growth, intestinal persistence, and postbiotic biosynthesis of six representative LAB and their interactions with 15 gut bacteria under 11 dietary regimes by combining multi-omics and in silico modeling. We confirmed predictions on short-term persistence of LAB and their interactions with commensals using cecal microbiome abundance and spent-medium experiments. Our analyses indicate that probiotic attributes are both diet and species specific and cannot be solely explained using genomics. For example, although both Lacticaseibacillus casei and Lactiplantibacillus plantarum encode similarly sized genomes with diverse capabilities, L. casei exhibits a more desirable phenotype. In addition, "high-fat/low-carb" diets more likely lead to detrimental outcomes for most LAB. Collectively, our results highlight that probiotics are not "one size fits all" health supplements and lay the foundation for personalized probiotic design.


Assuntos
Lactobacillales , Humanos , Lactobacillales/genética , Genômica , Dieta
6.
Biotechnol Bioeng ; 119(7): 1740-1754, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35435243

RESUMO

Chinese hamster ovary (CHO) cells are widely used for producing recombinant proteins. To enhance their productivity and product quality, media reformulation has been a key strategy, albeit with several technical challenges, due to the myriad of complex molecular mechanisms underlying media effects on culture performance. Thus, it is imperative to characterize metabolic bottlenecks under various media conditions systematically. To do so, we combined partial least square regression (PLS-R) with the flux balance analysis of a genome-scale metabolic model to elucidate the physiological states and metabolic behaviors of human alpha-1 antitrypsin producing CHO-DG44 cells grown in one commercial and another two in-house media under development. At the onset, PLS-R was used to identify metabolite exchanges that were correlated to specific growth and productivity. Then, by comparing metabolic states described by resultant flux distributions under two of the media conditions, we found suboptimal level of four nutrients and two metabolic wastes, which plausibly hindered cellular growth and productivity; mechanistically, lactate and ammonia recycling were modulated by glutamine and asparagine metabolisms in the media conditions, and also by hitherto unsuspected folate and choline supplements. Our work demonstrated how multivariate statistical analysis can be synergistically combined with metabolic modeling to uncover the mechanistic elements underlying differing media performance. It thus paved the way for the systematic identification of nutrient targets for medium reformulation to enhance recombinant protein production in CHO cells.


Assuntos
Técnicas de Cultura de Células , Animais , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/metabolismo , Humanos , Proteínas Recombinantes/genética
7.
Front Microbiol ; 13: 846555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308387

RESUMO

The incidence and prevalence of inflammatory disorders have increased globally, and is projected to double in the next decade. Gut microbiome-based therapeutics have shown promise in ameliorating chronic inflammation. However, they are largely experimental, context- or strain-dependent and lack a clear mechanistic basis. This hinders precision probiotics and poses significant risk, especially to individuals with pre-existing conditions. Molecules secreted by gut microbiota act as ligands to several health-relevant receptors expressed in human gut, such as the G-protein coupled receptors (GPCRs), Toll-like receptor 4 (TLR4), pregnane X receptor (PXR), and aryl hydrocarbon receptor (AhR). Among these, the human AhR expressed in different tissues exhibits anti-inflammatory effects and shows activity against a wide range of ligands produced by gut bacteria. However, different AhR ligands induce varying host responses and signaling in a tissue/organ-specific manner, which remain mostly unknown. The emerging systems biology paradigm, with its powerful in silico tool repertoire, provides opportunities for comprehensive and high-throughput strain characterization. In particular, combining metabolic models with machine learning tools can be useful to delineate tissue and ligand-specific signaling and thus their causal mechanisms in disease and health. The knowledge of such a mechanistic basis is indispensable to account for strain heterogeneity and actualize precision probiotics.

8.
MAbs ; 14(1): 2013593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35000555

RESUMO

Ensuring consistent high yields and product quality are key challenges in biomanufacturing. Even minor deviations in critical process parameters (CPPs) such as media and feed compositions can significantly affect product critical quality attributes (CQAs). To identify CPPs and their interdependencies with product yield and CQAs, design of experiments, and multivariate statistical approaches are typically used in industry. Although these models can predict the effect of CPPs on product yield, there is room to improve CQA prediction performance by capturing the complex relationships in high-dimensional data. In this regard, machine learning (ML) approaches offer immense potential in handling non-linear datasets and thus are able to identify new CPPs that could effectively predict the CQAs. ML techniques can also be synergized with mechanistic models as a 'hybrid ML' or 'white box ML' to identify how CPPs affect the product yield and quality mechanistically, thus enabling rational design and control of the bioprocess. In this review, we describe the role of statistical modeling in Quality by Design (QbD) for biomanufacturing, and provide a generic outline on how relevant ML can be used to meaningfully analyze bioprocessing datasets. We then offer our perspectives on how relevant use of ML can accelerate the implementation of systematic QbD within the biopharma 4.0 paradigm.


Assuntos
Indústria Farmacêutica , Aprendizado de Máquina , Controle de Qualidade
9.
mSystems ; 6(6): e0059921, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34904863

RESUMO

Construction and analysis of genome-scale metabolic models (GEMs) is a well-established systems biology approach that can be used to predict metabolic and growth phenotypes. The ability of GEMs to produce mechanistic insight into microbial ecological processes makes them appealing tools that can open a range of exciting opportunities in microbiome research. Here, we briefly outline these opportunities, present current rate-limiting challenges for the trustworthy application of GEMs to microbiome research, and suggest approaches for moving the field forward.

10.
Biotechnol Bioeng ; 118(11): 4305-4316, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289087

RESUMO

A robust monoclonal antibody (mAb) bioprocess requires physiological parameters such as temperature, pH, or dissolved oxygen to be well-controlled as even small variations in them could potentially impact the final product quality. For instance, pH substantially affects N-glycosylation, protein aggregation, and charge variant profiles, as well as mAb productivity. However, relatively less is known about how pH jointly influences product quality and titer. In this study, we investigated the effect of pH on culture performance, product titer, and quality profiles by applying longitudinal multi-omics profiling, including transcriptomics, proteomics, metabolomics, and glycomics, at three different culture pH set points. The subsequent systematic analysis of multi-omics data showed that pH set points differentially regulated various intracellular pathways including intracellular vesicular trafficking, cell cycle, and apoptosis, thereby resulting in differences in specific productivity, product titer, and quality profiles. In addition, a time-dependent variation in mAb N-glycosylation profiles, independent of pH, was identified to be mainly due to the accumulation of mAb proteins in the endoplasmic reticulum disrupting cellular homeostasis over culture time. Overall, this multi-omics-based study provides an in-depth understanding of the intracellular processes in mAb-producing CHO cell line under varied pH conditions, and could serve as a baseline for enabling the quality optimization and control of mAb production.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura de Células , Ciclo Celular , Metabolômica , Oxigênio/metabolismo , Animais , Células CHO , Cricetulus , Glicosilação , Concentração de Íons de Hidrogênio
11.
Crit Rev Microbiol ; 46(3): 288-299, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32434436

RESUMO

In the past decade, there has been a tremendous increase in studies on the link between oral microbiome and systemic diseases. However, variations in study design and confounding variables across studies often lead to inconsistent observations. In this narrative review, we have discussed the potential influence of study design and confounding variables on the current sequencing-based oral microbiome-systemic disease link studies. The current limitations of oral microbiome-systemic link studies on type 2 diabetes mellitus, rheumatoid arthritis, pregnancy, atherosclerosis, and pancreatic cancer are discussed in this review, followed by our perspective on how artificial intelligence (AI), particularly machine learning and deep learning approaches, can be employed for predicting systemic disease and host metadata from the oral microbiome. The application of AI for predicting systemic disease as well as host metadata requires the establishment of a global database repository with microbiome sequences and annotated host metadata. However, this task requires collective efforts from researchers working in the field of oral microbiome to establish more comprehensive datasets with appropriate host metadata. Development of AI-based models by incorporating consistent host metadata will allow prediction of systemic diseases with higher accuracies, bringing considerable clinical benefits.


Assuntos
Inteligência Artificial , Diagnóstico , Doença , Microbiota , Boca/microbiologia , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/microbiologia , Aterosclerose/diagnóstico , Aterosclerose/microbiologia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/microbiologia , Feminino , Humanos , Metagenômica , Redes Neurais de Computação , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/microbiologia , Gravidez
12.
Metab Eng ; 60: 138-147, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330653

RESUMO

Chinese hamster ovary (CHO) cells are most prevalently used for producing recombinant therapeutics in biomanufacturing. Recently, more rational and systems approaches have been increasingly exploited to identify key metabolic bottlenecks and engineering targets for cell line engineering and process development based on the CHO genome-scale metabolic model which mechanistically characterizes cell culture behaviours. However, it is still challenging to quantify plausible intracellular fluxes and discern metabolic pathway usages considering various clonal traits and bioprocessing conditions. Thus, we newly incorporated enzyme kinetic information into the updated CHO genome-scale model (iCHO2291) and added enzyme capacity constraints within the flux balance analysis framework (ecFBA) to significantly reduce the flux variability in biologically meaningful manner, as such improving the accuracy of intracellular flux prediction. Interestingly, ecFBA could capture the overflow metabolism under the glucose excess condition where the usage of oxidative phosphorylation is limited by the enzyme capacity. In addition, its applicability was successfully demonstrated via a case study where the clone- and media-specific lactate metabolism was deciphered, suggesting that the lactate-pyruvate cycling could be beneficial for CHO cells to efficiently utilize the mitochondrial redox capacity. In summary, iCHO2296 with ecFBA can be used to confidently elucidate cell cultures and effectively identify key engineering targets, thus guiding bioprocess optimization and cell engineering efforts as a part of digital twin model for advanced biomanufacturing in future.


Assuntos
Células CHO/metabolismo , Enzimas/genética , Enzimas/metabolismo , Animais , Cricetinae , Cricetulus , Tamanho do Genoma , Glucose/metabolismo , Cinética , Ácido Láctico/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Modelos Genéticos , Oxirredução , Ácido Pirúvico/metabolismo
15.
Mol Plant Pathol ; 21(4): 527-540, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32068953

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) is a vascular pathogen that causes leaf blight in rice, leading to severe yield losses. Since the usage of chemical control methods has not been very promising for the future disease management, it is of high importance to systematically gain new insights about Xoo virulence and pathogenesis, and devise effective strategies to combat the rice disease. To do this, we reconstructed a genome-scale metabolic model of Xoo (iXOO673) and validated the model predictions using culture experiments. Comparison of the metabolic architecture of Xoo and other plant pathogens indicated that the Entner-Doudoroff pathway is a more common feature in these bacteria than previously thought, while suggesting some of the unique virulence mechanisms related to Xoo metabolism. Subsequent constraint-based flux analysis allowed us to show that Xoo modulates fluxes through gluconeogenesis, glycogen biosynthesis, and degradation pathways, thereby exacerbating the leaf blight in rice exposed to nitrogenous fertilizers, which is remarkably consistent with published experimental literature. Moreover, model-based interrogation of transcriptomic data revealed the metabolic components under the diffusible signal factor regulon that are crucial for virulence and survival in Xoo. Finally, we identified promising antibacterial targets for the control of leaf blight in rice by using gene essentiality analysis.


Assuntos
Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia de Sistemas
16.
J Biotechnol ; 308: 10-20, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756358

RESUMO

Mammalian cell culture platform has been successfully implemented for industrial biopharmaceutical production through the advancements in early stage process development including cell-line engineering, media design and process optimization. However, late stage developments such as scale-up, scale-down and large-scale cell cultivation still face many industrial challenges to acquire comparable process performance between different culture scales. One of them is the sparging strategy which significantly affects productivity, quality and comparability. Currently, it is mainly relying on the empirical records due to the lack of theoretical framework and scarcity of available literatures to elucidate intracellular metabolic features. Therefore, it is highly required to characterize the underlying mechanism of physiological changes and metabolic states upon the aeration stress. To this end, initially we cultivated antibody producing CHO cells under mild and harsh sparging conditions and observed that sparging stress leads to the decreased cell growth rate, viability and productivity. Subsequent in silicomodel-driven flux analysis suggested that sparging stress rewires amino acid metabolism towards the enriched H2O2 turnover rate by up-regulated fluxes of amino acid oxidases. Interestingly, many of these H2O2-generating reactions were closely connected with the production of NADH, NADPH and GSH which are typical reducing equivalents. Thus, we can hypothesize that increased amino acid uptake caused by sparging stress contributes to restore redox homeostasis against oxidative stress. The current model-driven systematic data analysis allows us to quickly define distinct metabolic feature under stress condition by using basic cell cultivation datasets.


Assuntos
Aminoácidos/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Fisiológico , Animais , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Células CHO , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Simulação por Computador , Cricetulus , Meios de Cultura
17.
Biotechnol Bioeng ; 116(9): 2117-2129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31066037

RESUMO

Chinese hamster ovary (CHO) cells are the most prevalent mammalian cell factories for producing recombinant therapeutic proteins due to their ability to synthesize human-like post-translational modifications and ease of maintenance in suspension cultures. Currently, a wide variety of CHO host cell lines has been developed; substantial differences exist in their phenotypes even when transfected with the same target vector. However, relatively less is known about the influence of their inherited genetic heterogeneity on phenotypic traits and production potential from the bioprocessing point of view. Herein, we present a global transcriptome and proteome profiling of three commonly used parental cell lines (CHO-K1, CHO-DXB11, and CHO-DG44) in suspension cultures and further report their growth-related characteristics, and N- and O-glycosylation patterns of host cell proteins (HCPs). The comparative multi-omics and subsequent genome-scale metabolic network model-based enrichment analyses indicated that some physiological variations of CHO cells grown in the same media are possibly originated from the genetic deficits, particularly in the cell-cycle progression. Moreover, the dihydrofolate reductase deficient DG44 and DXB11 possess relatively less active metabolism when compared to K1 cells. The protein processing abilities and the N- and O-glycosylation profiles also differ significantly across the host cell lines, suggesting the need to select host cells in a rational manner for the cell line development on the basis of recombinant protein being produced.


Assuntos
Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Animais , Células CHO , Cricetulus , Glicosilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
18.
Curr Genomics ; 19(8): 712-722, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30532650

RESUMO

In nature, microbes do not exist in isolation but co-exist in a variety of ecological and biological environments and on various host organisms. Due to their close proximity, these microbes interact among themselves, and also with the hosts in both positive and negative manners. Moreover, these interactions may modulate dynamically upon external stimulus as well as internal community changes. This demands systematic techniques such as mathematical modeling to understand the intrinsic community behavior. Here, we reviewed various approaches for metabolic modeling of microbial communities. If detailed species-specific information is available, segregated models of individual organisms can be constructed and connected via metabolite exchanges; otherwise, the community may be represented as a lumped network of metabolic reactions. The constructed models can then be simulated to help fill knowledge gaps, and generate testable hypotheses for designing new experiments. More importantly, such community models have been developed to study microbial interactions in various niches such as host microbiome, biogeochemical and bioremediation, waste water treatment and synthetic consortia. As such, the metabolic modeling efforts have allowed us to gain new insights into the natural and synthetic microbial communities, and design interventions to achieve specific goals. Finally, potential directions for future development in metabolic modeling of microbial communities were also discussed.

19.
Microb Cell Fact ; 17(1): 167, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30359263

RESUMO

BACKGROUND: Cellular metabolism is tightly regulated by hard-wired multiple layers of biological processes to achieve robust and homeostatic states given the limited resources. As a result, even the most intuitive enzyme-centric metabolic engineering endeavours through the up-/down-regulation of multiple genes in biochemical pathways often deliver insignificant improvements in the product yield. In this regard, targeted engineering of transcriptional regulators (TRs) that control several metabolic functions in modular patterns is an interesting strategy. However, only a handful of in silico model-added techniques are available for identifying the TR manipulation candidates, thus limiting its strain design application. RESULTS: We developed hierarchical-Beneficial Regulatory Targeting (h-BeReTa) which employs a genome-scale metabolic model and transcriptional regulatory network (TRN) to identify the relevant TR targets suitable for strain improvement. We then applied this method to industrially relevant metabolites and cell factory hosts, Escherichia coli and Corynebacterium glutamicum. h-BeReTa suggested several promising TR targets, many of which have been validated through literature evidences. h-BeReTa considers the hierarchy of TRs in the TRN and also accounts for alternative metabolic pathways which may divert flux away from the product while identifying suitable metabolic fluxes, thereby performing superior in terms of global TR target identification. CONCLUSIONS: In silico model-guided strain design framework, h-BeReTa, was presented for identifying transcriptional regulator targets. Its efficacy and applicability to microbial cell factories were successfully demonstrated via case studies involving two cell factory hosts, as such suggesting several intuitive targets for overproducing various value-added compounds.


Assuntos
Simulação por Computador , Corynebacterium glutamicum/genética , Escherichia coli/genética , Transcrição Gênica , Algoritmos , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genoma Bacteriano , Metaboloma
20.
J Biotechnol ; 283: 97-104, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076878

RESUMO

We explored the effects of media and clonal variation on the lactate shift which can be considered as one of the desirable features in CHO cell culture. Various culture profiles with the specific growth and antibody production rates under three different media conditions in two CHO producing clones were evaluated by resorting to multivariate statistical analysis. In most cases, glutamine depletion coincided with lactate consumption, suggesting that glutaminolysis rather than glycolysis was the preferred pathway for the pyruvate supply toward lactate production. With respect to the lactate shift, high performing medium showed higher glutamate uptake, higher aspartate secretion and lower serine uptake compared to other media conditions. In addition, clone itself exhibited the desired lactate consumption more consistently accompanying with distinguishing phenotype. The clone exhibiting lactate shift produced lesser lactate in exponential phase but two-fold higher non-toxic alanine, thus leading to better culture environment. Thus, we understand the balanced selection of clone and media composition enables cells to utilize the metabolic pathways for the desired lactate shift.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Glutamina/metabolismo , Ácido Láctico/química , Alanina , Animais , Ácido Aspártico/metabolismo , Células CHO , Proliferação de Células , Cricetinae , Cricetulus , Redes e Vias Metabólicas , Fenótipo , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA