Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36146728

RESUMO

Parvovirus B19 (B19V) is a human pathogen that is the causative agent of fifth disease in children. It is also known to cause hydrops in fetuses, anemia in AIDS patients, and transient aplastic crisis in patients with sickle cell disease. The unique N-terminus of Viral Protein 1 (VP1u) of parvoviruses, including B19V, exhibits phospholipase A2 (PLA2) activity, which is required for endosomal escape. Presented is the structural dynamics of B19V VP1u under conditions that mimic the pHs of cell entry and endosomal trafficking to the nucleus. Using circular dichroism spectroscopy, the receptor-binding domain of B19V VP1u is shown to exhibit an α-helical fold, whereas the PLA2 domain exhibits a probable molten globule state, both of which are pH invariant. Differential scanning calorimetry performed at endosomal pHs shows that the melting temperature (Tm) of VP1u PLA2 domain is tuned to body temperature (37 °C) at pH 7.4. In addition, PLA2 assays performed at temperatures ranging from 25-45 °C show both a temperature and pH-dependent change in activity. We hypothesize that VP1u PLA2 domain differences in Tm at differing pHs have enabled the virus to "switch on/off" the phospholipase activity during capsid trafficking. Furthermore, we propose the environment of the early endosome as the optimal condition for endosomal escape leading to B19V infection.


Assuntos
Parvovirus B19 Humano , Internalização do Vírus , Proteínas do Capsídeo/metabolismo , Criança , Endossomos/metabolismo , Humanos , Parvovirus B19 Humano/metabolismo , Fosfolipases A2/química , Proteínas Virais/metabolismo
2.
FEBS J ; 287(12): 2597-2611, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31782893

RESUMO

Cell surface-localized P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans mediates sucrose-independent adhesion to tooth surfaces. Previous studies showed that P1's C-terminal segment (C123, AgII) is also liberated as a separate polypeptide, contributes to cellular adhesion, interacts specifically with intact P1 on the cell surface, and forms amyloid fibrils. Identifying how C123 specifically interacts with P1 at the atomic level is essential for understanding related virulence properties of S. mutans. However, with sizes of ~ 51 and ~ 185 kDa, respectively, C123 and full-length P1 are too large to achieve high-resolution data for full structural analysis by NMR. Here, we report on biologically relevant interactions of the individual C3 domain with A3VP1, a polypeptide that represents the apical head of P1 as it is projected on the cell surface. Also evaluated are C3's interaction with C12 and the adhesion-inhibiting monoclonal antibody (MAb) 6-8C. NMR titration experiments with 15 N-enriched C3 demonstrate its specific binding to A3VP1. Based on resolved C3 assignments, two binding sites, proximal and distal, are identified. Complementary NMR titration of A3VP1 with a C3/C12 complex suggests that binding of A3VP1 occurs on the distal C3 binding site, while the proximal site is occupied by C12. The MAb 6-8C binding interface to C3 overlaps with that of A3VP1 at the distal site. Together, these results identify a specific C3-A3VP1 interaction that serves as a foundation for understanding the interaction of C123 with P1 on the bacterial surface and the related biological processes that stem from this interaction. DATABASE: BMRB submission code: 27935.


Assuntos
Adesinas Bacterianas/química , Ressonância Magnética Nuclear Biomolecular , Streptococcus mutans/química , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA