Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Foods ; 13(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39123630

RESUMO

Contamination of leafy greens with Staphylococcus spp. can occur at various supply chain stages, from farm to table. This study comprehensively analyzes the species diversity, antimicrobial resistance, and virulence factors of Staphylococci in salad vegetables from markets in the United Arab Emirates (UAE). A total of 343 salad items were sampled from three major cities in the UAE from May 2022 to February 2023 and tested for the presence of Staphylococcus spp. using standard culture-based methods. Species-level identification was achieved using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Antimicrobial susceptibility testing was conducted using the VITEK-2 system with AST-P592 cards. Additionally, whole genome sequencing (WGS) of ten selected isolates was performed to characterize antimicrobial resistance determinants and toxin-related virulence factors. Nine Staphylococcus species were identified in 37.6% (129/343) of the tested salad items, with coagulase-negative staphylococci (CoNS) dominating (87.6% [113/129]) and S. xylosus being the most prevalent (89.4% [101/113]). S. aureus was found in 4.6% (14/343) of the salad samples, averaging 1.7 log10 CFU/g. One isolate was confirmed as methicillin-resistant S. aureus, harboring the mecA gene. It belonged to multi-locus sequence type ST-672 and spa type t384 and was isolated from imported fresh dill. Among the characterized S. xylosus (n = 45), 13.3% tested positive in the cefoxitin screen test, and 6.6% were non-susceptible to oxacillin. WGS analysis revealed that the cytolysin gene (cylR2) was the only toxin-associated factor found in S. xylosus, while a methicillin-sensitive S. aureus isolate harbored the Panton-Valentine Leukocidin (LukSF/PVL) gene. This research is the first to document the presence of methicillin-resistant S. aureus in the UAE food chain. Furthermore, S. xylosus (a coagulase-negative staphylococcus not commonly screened in food) has demonstrated phenotypic resistance to clinically relevant antimicrobials. This underscores the need for vigilant monitoring of antimicrobial resistance in bacterial contaminants, whether pathogenic or commensal, at the human-food interface.

2.
Int J Food Microbiol ; 423: 110828, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39032201

RESUMO

Non-typhoidal Salmonella represents a significant global concern for food safety and One Health. Despite the United Arab Emirates (UAE) being a leading consumer of chicken meat globally, there is a lack of comprehensive understanding regarding the prevalence and genomic characteristics of Salmonella within the country. This study aims to address this gap by conducting a thorough analysis of Salmonella prevalence, antimicrobial resistance, and genomic profiles of isolates obtained from whole broiler carcasses retailed under chilled conditions in the UAE. Our findings reveal that Salmonella was detected in 41.2 % (130/315) of the sampled chilled broiler carcasses, with notable variability observed among samples sourced from six different companies. Phenotypic antimicrobial resistance (AMR) testing, among 105 isolates, highlighted high resistance rates to tetracycline (97.1 %), nalidixic acid (93.3 %), ampicillin (92.4 %), azithromycin (75.2 %), ciprofloxacin (63.8 %), and ceftriaxone (54.3 %). Furthermore, a concerning 99 % (104/105) of the isolates exhibited multidrug resistance. Whole-genome sequencing (WGS) of 60 isolates identified five serovars, with S. infantis/Sequence Type (ST) 32 (55 %) and S. Minnesota/ST-458 (28.3 %) being the most prevalent. WGS analysis unveiled 34 genes associated with antimicrobial resistance, including mcr-1.1 (only in two isolates), conferring resistance to colistin. The two major serovars, Infantis and Minnesota, exhibited significant variation (P-values <0.001) in the distribution of major AMR genes (aadA1, blaCMY-2, blaSHV-12, qnrB19, qnrS1, sul1, and sul2). Notably, the gene qacEdelta, conferring resistance to quaternary ammonium compounds commonly found in disinfectants, was universally present in all S. Infantis isolates (n = 33), compared to only one S. Minnesota isolate. Additionally, all S. Infantis isolates harbored the IncFIB (pN55391) plasmid replicon type. Major serovars exhibited distinct distributions of antimicrobial resistance genes, underscoring the importance of serovar-specific surveillance. These findings emphasize the critical need for continuous surveillance and intervention measures to address Salmonella contamination risks in poultry products, providing valuable insights for public health and regulatory strategies not only in the UAE but also globally.


Assuntos
Antibacterianos , Galinhas , Farmacorresistência Bacteriana Múltipla , Salmonella enterica , Animais , Galinhas/microbiologia , Emirados Árabes Unidos/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Salmonella enterica/genética , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/isolamento & purificação , Antibacterianos/farmacologia , Prevalência , Microbiologia de Alimentos , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Carne/microbiologia , Genoma Bacteriano , Contaminação de Alimentos/análise
3.
Foodborne Pathog Dis ; 21(8): 521-524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38804146

RESUMO

Plasmid-mediated colistin resistance is an emerging One Health challenge at the human-food-environment interface. In this study, 12 colistin-resistant Escherichia coli carrying mcr-1.1 gene were characterized using whole-genome sequencing. This is the first report from locally produced chicken meat in the United Arab Emirates. The characterized isolates harbored virulence-associated factors ranging from 4 to 17 genes per isolate. The multilocus sequence type 1011 was identified in 5 (41.6%) isolates. Six (50.0%) of the isolates harbored blaCTX-M-55. All of the E. coli isolates contained Incl2 plasmids. This study highlights for the first time chicken meat as a potential reservoir of mcr-1.1 carrying E. coli in the UAE. This study has implications for food safety and underscores the need for comprehensive surveillance strategies to monitor the spread of colistin resistance. Results presented in this short communication address knowledge gaps on the epidemiology of plasmid-mediated colistin resistance in the Middle East food production chain.


Assuntos
Antibacterianos , Galinhas , Colistina , Farmacorresistência Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Carne , Plasmídeos , Animais , Colistina/farmacologia , Emirados Árabes Unidos/epidemiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Plasmídeos/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Carne/microbiologia , Proteínas de Escherichia coli/genética , Sequenciamento Completo do Genoma , Genômica , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Humanos , Tipagem de Sequências Multilocus , Fatores de Virulência/genética , Genoma Bacteriano
4.
J Infect Public Health ; 16 Suppl 1: 163-171, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957104

RESUMO

BACKGROUND: The United Arab Emirates (UAE) has witnessed rapid urbanization and a surge in pet ownership, sparking concerns about the possible transfer of antimicrobial resistance (AMR) from pets to humans and the environment. This study delves into the whole-genome sequencing analysis of ESBL-producing E. coli strains from healthy cats and dogs in the UAE, which exhibit multidrug resistance (MDR). Additionally, it provides a genomic exploration of the mobile colistin resistance gene mcr-1.1, marking the first instance of its detection in Middle Eastern pets. METHODS: We investigate 17 ESBL-producing E. coli strains from healthy UAE pets using WGS and bioinformatics analysis to identify genes encoding virulence factors, assign diverse typing schemes to the isolates, and scrutinize the presence of AMR genes. Furthermore, we characterized plasmid contigs housing the mcr-1.1 gene and conducted phylogenomic analysis to evaluate their relatedness to previously identified UAE isolates. RESULTS: Our study unveiled a variety of virulence factor-encoding genes within the isolates, with fimH emerging as the most prevalent. Regarding ß-lactamase resistance genes, the blaCTX group 1 gene family predominated, with CTX-M-15 found in 52.9% (9/17) of the isolates, followed by CTX-M-55 in 29.4% (5/17). These isolates were categorized into multiple sequence types (STs), with the epidemic ST131 being the most frequent. The presence of the mcr-1.1 gene, linked to colistin resistance, was confirmed in two isolates. These isolates belonged to ST1011 and displayed distinct profiles of ß-lactamase resistance genes. Phylogenomic analysis revealed close connections between the isolates and those from chicken meat in the UAE. CONCLUSION: Our study underscores the presence of MDR ESBL-producing E. coli in UAE pets. The identification of mcr-1.1-carrying isolates warrants the urgency of comprehensive AMR surveillance and highlights the role of companion animals in AMR epidemiology. These findings underscore the significance of adopting a One Health approach to mitigate AMR transmission risks effectively.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Saúde Única , Humanos , Gatos , Animais , Cães , Escherichia coli , Colistina/farmacologia , Galinhas , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Emirados Árabes Unidos/epidemiologia , beta-Lactamases/genética , beta-Lactamases/farmacologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Plasmídeos/genética , Genômica , Carne
5.
Animals (Basel) ; 13(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37238016

RESUMO

Extended-spectrum ß-lactamases resistant (ESBL-R) Escherichia coli (E. coli) has been reported from healthy and sick pets. However, data from Middle Eastern countries, including the United Arab Emirates (UAE), are minimal. This study provides the first evidence of ESBL-R E. coli carriage among pets in the UAE. A total of 148 rectal swabs were collected from domestic cats (n = 122) and dogs (n = 26) attending five animal clinics in the UAE. Samples were cultured directly onto selective agar, and suspected colonies were confirmed as ESBL-producing using phenotypic and molecular methods. Confirmed isolates were screened for their phenotypic resistance to twelve antimicrobial agents using the Kirby Bauer method. The owners of the pets completed a questionnaire at the time of sampling, and the data were used to identify risk factors. ESBL-R E. coli was detected in rectal swabs of 35 out of 148 animals (23.65%) (95% confidence interval [CI]: 17.06-31.32). Multivariable logistic regression analysis identified cats and dogs with access to water in ditches and puddles as 3.71 (p-value = 0.020) times more likely to be positive to ESBL-R E. coli than those without access to open water sources. Ciprofloxacin resistance was evident in 57.14% (44/77) of the ESBL-R E. coli isolates. The percentage of resistance to azithromycin and cefepime was 12.99% (10/77) and 48.05% (37/77), respectively. The blaCTX-M gene was detected in 82% of the PCR-screened isolates (n = 50). Multidrug resistance (MDR) phenotypes were evident in 91% (70/77) of the isolates. In conclusion, ESBL-R E. coli was detected at a noticeable rate among healthy pet cats and dogs in the UAE, and the majority are MDR to clinically important antimicrobials such as fluoroquinolones and 3rd and 4th generation cephalosporins. Our results call for strengthening antimicrobial stewardship among companion animal veterinarians in the UAE to reduce the potential transmission of ESBL-R E. coli between pets, humans, and urban environments.

6.
Curr Res Food Sci ; 6: 100434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687171

RESUMO

Campylobacter is a major cause of gastroenteritis worldwide, with broiler meat accounting for most illnesses. Antimicrobial intervention is recommended in severe cases of campylobacteriosis. The emergence of antimicrobial resistance (AMR) in Campylobacter is a concerning food safety challenge, and monitoring the trends of AMR is vital for a better risk assessment. This study aimed to characterize the phenotypic profiles and molecular markers of AMR and virulence in the prevalent Campylobacter species contaminating chilled chicken carcasses sampled from supermarkets in the United Arab Emirates (UAE). Campylobacter was detected in 90 (28.6%) out of 315 tested samples, and up to five isolates from each were confirmed using multiplex PCR. The species C. coli was detected in 83% (75/90) of the positive samples. Whole-genome sequencing was used to characterize the determinants of AMR and potential virulence genes in 45 non-redundant C. coli isolates. We identified nine resistance genes, including four associated with resistance to aminoglycoside (aph(3')-III, ant(6)-Ia, aph(2″)-Ib, and aac(6')-Im), and three associated with Beta-lactam resistance (blaOXA-61, blaOXA-193, and blaOXA-489), and two linked to tetracycline resistance (tet(O/32/O), and tet(O)), as well as point mutations in gyrA (fluoroquinolones resistance), 23S rRNA (macrolides resistance), and rpsL (streptomycin resistance) genes. A mutation in gyrA 2 p.T86I, conferring resistance to fluoroquinolones, was detected in 93% (42/45) of the isolates and showed a perfect match with the phenotype results. The simultaneous presence of blaOXA-61 and blaOXA-193 genes was identified in 86.6% (39/45) of the isolates. In silico analysis identified 7 to 11 virulence factors per each C. coli isolate. Some of these factors were prevalent in all examined strains and were associated with adherence (cadF, and jlpA), colonization and immune evasion (capsule biosynthesis and transport, lipooligosaccharide), and invasion (ciaB). This study provides the first published evidence from the UAE characterizing Campylobacter virulence, antimicrobial resistance genotype, and phenotype analysis from retail chicken. The prevalent C. coli in the UAE retail chicken carries multiple virulence genes and antimicrobial resistance markers and exhibits frequent phenotype resistance to macrolides, quinolones, and tetracyclines. The present investigation adds to the current knowledge on molecular epidemiology and AMR development in non-jejuni Campylobacter species in the Middle East and globally.

7.
Int J Food Microbiol ; 379: 109835, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35863148

RESUMO

Plasmid-borne colistin resistance is considered one of the most complex public health concerns worldwide. Several studies reported the presence of the mcr-1.1 harboring Salmonella from the foodstuffs worldwide; still, there is a knowledge gap about the occurrence of these isolates in the Middle East. In this study, we report an mcr-1.1-mediated colistin resistance in two multidrug-resistant (MDR) S. Minnesota (denoted as Sal_2 and Sal_10), with both being also extended-spectrum ß-lactamase (ESBL) producing. These isolates have been recovered from two independent samples out of 315 chilled chicken meat tested from retail supermarkets in the United Arab Emirates (UAE). Based on whole-genome sequencing (WGS) analysis, both isolates belonged to the same Sequence Type (ST) ST548. They shared the same genes encoding resistance to the following antimicrobials: polymyxin (mcr-1.1), phenicol (floR), quinolone (qnrB19), aminoglycoside (aac(6')-Iaa), tetracycline (tet(A)), and sulfonamide (sul2). However, the isolates featured different patterns of ß-lactamase resistance genes, which included blaCTX-M-55 (ESBL-ß-lactamase) and blaCMY-2 (AmpC-ß-lactamase) in the isolate Sal_2, and blaTEM-215 (ESBL-ß-lactamase) in the isolate Sal_10. WGS analysis inferred that both S. Minnesota isolates in this study carry an IncX4 plasmid harboring the mcr-1.1 variant. To understand the possible origin of the two mcr-1.1 carrying S. Minnesota isolated from retail chicken meat in this study, we conducted a phylogenomic analysis using available genomes of S. enterica, which harbored mcr-1.1 gene (n = 240, from the Middle East and Asian countries) deposited in the NCBI database. We found that Sal_2 and Sal_10 independently clustered together with other isolates detected in China, mainly from the chicken origin and to a lesser extent from human clinical origin. The finding of mcr-producing colistin-resistant strains in retail chicken meat warrants a more comprehensive One Health investigations involving strains from animals, retail food chains, and human clinical isolates at the national level in the UAE.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , Galinhas/genética , Colistina/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genômica , Humanos , Carne/análise , Plasmídeos/genética , Salmonella/genética , Supermercados , beta-Lactamases/genética
8.
Foodborne Pathog Dis ; 19(9): 590-597, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35749143

RESUMO

Enterococci have recently emerged as nosocomial pathogens worldwide. Their ubiquitous nature determines their frequent finding in foods as contaminants. In this study, we aimed to determine the counts, species diversity, antimicrobial resistance profile, and to screen for a set of virulence genes among enterococci. Enterococcus were identified from 75.7% (125/165) of chilled chicken carcasses, belonging to seven companies, sampled from retail markets in Abu Dhabi Emirate, United Arab Emirates (U.A.E.). Overall, the samples, with a mean Enterococcus count of 2.58 log10 colony-forming unit (CFU)/g with a standard deviation of ±1.17 log10 CFU/g. Among the characterized Enterococcus isolates (n = 90), Enterococcus faecalis was the predominant species (51.1%), followed by Enterococcus faecium (37.8%). Using Vitek2 automated antimicrobial sensitivity panel, we found none of the E. faecalis nor E. faecium to be resistant to ampicillin, teicoplanin, vancomycin, or tigecycline. A third of the E. faecalis (28.3%) and E. faecium (35.3%) were resistant to high-level gentamicin. Over half of E. faecalis (54.3%) were resistant to ciprofloxacin, and the same was in about a third of E. faecium isolates (29.4%). Linezolid resistance was identified in 10 E. faecalis and 7 E. faecium isolates belonging to samples from three companies. All of the linezolid-resistant isolates harbored oxazolidinone resistance optrA gene. Virulence-associated genes (asa1 and gelE) were significantly (p < 0.05) more detected among E. faecalis compared to E. faecium isolates recovered in this study. Over half of the E. faecalis (25/46) and E. faecium (20/34) isolates were identified as multidrug-resistant. This study provides further insight into virulence genes and their association with the dissemination of multidrug-resistant E. faecalis and E. faecium in supermarket chicken meat in the U.A.E. This is probably the first description of the optrA gene in enterococci from supermarket chicken meat in the U.A.E. and from Arab countries. This study adds to the regional and global understanding of antimicrobial resistance spread in foods of animal origin.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Antibacterianos/farmacologia , Galinhas , Farmacorresistência Bacteriana/genética , Enterococcus/genética , Enterococcus faecalis/genética , Enterococcus faecium/genética , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Emirados Árabes Unidos , Virulência/genética
9.
Foods ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37430937

RESUMO

The foodborne transfer of resistant genes from enterococci to humans and their tolerance to several commonly used antimicrobials are of growing concern worldwide. Linezolid is a last-line drug for managing complicated illnesses resulting from multidrug-resistant Gram-positive bacteria. The optrA gene has been reported in enterococci as one of the acquired linezolid resistance mechanisms. The present study uses whole-genome sequencing analysis to characterize the first reported isolates of linezolid-resistant E. faecium (n = 6) and E. faecalis (n = 10) harboring the optrA gene isolated from samples of supermarket broiler meat (n = 165) in the United Arab Emirates (UAE). The sequenced genomes were used to appraise the study isolates' genetic relatedness, antimicrobial resistance determinants, and virulence traits. All 16 isolates carrying the optrA gene demonstrated multidrug-resistance profiles. Genome-based relatedness classified the isolates into five clusters that were independent of the isolate sources. The most frequently known genotype among the isolates was the sequence type ST476 among E. faecalis (50% (5/10)). The study isolates revealed five novel sequence types. Antimicrobial resistance genes (ranging from 5 to 13) were found among all isolates that conferred resistance against 6 to 11 different classes of antimicrobials. Sixteen different virulence genes were found distributed across the optrA-carrying E. faecalis isolates. The virulence genes in E. faecalis included genes encoding invasion, cell adhesion, sex pheromones, aggregation, toxins production, the formation of biofilms, immunity, antiphagocytic activity, proteases, and the production of cytolysin. This study presented the first description and in-depth genomic characterization of the optrA-gene-carrying linezolid-resistant enterococci from retail broiler meat in the UAE and the Middle East. Our results call for further monitoring of the emergence of linezolid resistance at the retail and farm levels. These findings elaborate on the importance of adopting a One Health surveillance approach involving enterococci as a prospective bacterial indicator for antimicrobial resistance spread at the human-food interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA