RESUMO
The hydrogen bonding interaction between an amide N-H and the amide N of the preceding residue is prevalent in proline-containing proteins and peptides. However, the N-Hâ â â N hydrogen bonding interaction is rare in non-prolyl natural peptides due to restricted dihedral angles. Herein, we stabilize this type of interaction in 8-aminoquinoline appended non-prolyl peptides through bifurcated Nâ â â Hâ â â N hydrogen bond. The 8-aminoquinoline-incorporated model peptides 2 a-i were designed, synthesized, and the crystal structures of 2 a-c and 2 i were solved. Analysis of crystal data reveals that the amide N-H of aminoquinoline is involved in bifurcated hydrogen bonding interaction with the nitrogen of the preceding amino acid residue and the nitrogen in quinoline. Analysis of crystal packing, Hirshfeld surface and fingerprint plots confirms that the intermolecular Oâ â â H contacts significantly contribute to stabilizing bifurcated Nâ â â Hâ â â N hydrogen bonding interaction. Furthermore, NMR experiments and CD spectroscopy were conducted to examine the preferred conformation in solution, and the data corroborate with the crystal structure conformation.
Assuntos
Aminoquinolinas , Ligação de Hidrogênio , Peptídeos , Peptídeos/química , Peptídeos/síntese química , Aminoquinolinas/química , Aminoquinolinas/síntese química , Cristalografia por Raios X , Modelos MolecularesRESUMO
The discovery of milder and robust strategies to enable the introduction of organoboronates in peptides remains conspicuously underdeveloped. Herein, we demonstrate an efficient method for the site-selective sp2 -C7-H borylation of tryptophan under metal-free condition using BBr3 directed by pivaloyl group. The versatility of this approach is that gram scale synthesis and C7-borylated N-Phth-Trp(N-Piv)(C7-BPin)-OMe was modified into various C7-substituted derivatives. Moreover, the strategy enables for the peptide elongation and late-stage borylation of peptides, natural product Brevianamide F and drug Oglufanide.
Assuntos
Produtos Biológicos , Triptofano , Peptídeos , MetaisRESUMO
Gramicidin S, natural antimicrobial peptide is used commercially in medicinal lozenges for sore throat and Gram-negative and Gram-positive bacterial infections. However, its clinical potential is limited to topical applications because of its high red blood cells (RBC) cytotoxicity. Given the importance of developing potential antibiotics and inspired by the cyclic structure and druggable features of Gramicidin S, we edited proline α-carbon with stereodynamic nitrogen to examine the direct impact on biological activity and cytotoxicity with respect to prolyl counterpart. Natural Gramicidin S (12), proline-edited peptides 13-16 and wild-type d-Phe-d-Pro ß-turn mimetics (17 and 18) were synthesized using solid phase peptide synthesis and investigated their activity against clinically relevant bacterial pathogens. Interestingly, mono-proline edited analogous peptide 13 showed moderate improvement in antimicrobial activity against E. coli ATCC 25922 and K.pneumoniae BAA 1705 as compared to Gramicidin S. Furthermore, proline edited peptide 13 exhibited equipotent antimicrobial effect against MDR S. aureus and Enterococcus spp. Analysis of cytotoxicity against VERO cells and RBC, reveals that proline edited peptides showed two-fivefold lesser cytotoxicity than the counterpart Gramicidin S. Our study suggests that introducing single azPro/Pro mutation in Gramicidin S marginally improved the activity and lessens the cytotoxicity as compared with the parent peptide.
Assuntos
Gramicidina , Prolina , Animais , Chlorocebus aethiops , Gramicidina/farmacologia , Gramicidina/química , Prolina/farmacologia , Prolina/química , Escherichia coli , Staphylococcus aureus , Células Vero , Antibacterianos/farmacologia , Antibacterianos/química , PeptídeosRESUMO
The current regime for leishmaniasis is associated with several adverse effects, expensive, parenteral treatment for longer periods and the emergence of drug resistance. To develop affordable and potent antileishmanial agents, a series of N-acyl and homodimeric aryl piperazines were synthesized with high purity, predicted druggable properties by in silico methods and investigated their antileishmanial activity. The in vitro biological activity of synthesized compounds against clinically validated intracellular amastigote and extracellular promastigote form of Leishmania donovani parasite showed eight compounds inhibited 50% amastigotes growth below 25 µM. The half maximal inhibitory concentration (IC50) and cytotoxicity assessment of eight active compounds, 4a, 4d and 4e demonstrated activity with an IC50 2.0 - 9.1 µM and selectivity index 10 - 42. Compound 4d (IC50 2.0 µM, SI = 42) found to be the best among them with four-folds more potent and eight-folds less toxic than the control drug miltefosine. Overall, results demonstrated that compound 4d is a promising lead candidate for further development as antileishmanial drug.
Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose , Humanos , Leishmaniose/tratamento farmacológicoRESUMO
The available therapeutic treatment for leishmaniasis is inadequate and toxic due to side effects, expensive and emergence of drug resistance. Affordable and safe antileishmanial agents are urgently needed and toward this objective, we synthesized a series of 32 novel halogen rich salicylanilides including niclosamide and oxyclozanide and investigated their antileishmanial activity against amastigotes of Leishmania donovani. In vitro data showed fifteen compounds inhibited intracellular amastigotes with an IC50 of below 5 µM and selectivity index above 10. Among 15 active compounds, 14 and 24 demonstrated better activity with an IC50 of 2.89 µM and 2.09 µM respectively and selectivity index is 18. Compound 24 exhibited significant in vivo antileishmanial efficacy and reduced 65% of the splenic parasite load on day 28th post-treatment in the experimental visceral leishmaniasis golden hamster model. The data suggest that 24 can be a promising lead candidate possessing potential to be developed into a leishmanial drug candidate.
Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Leishmaniose , Cricetinae , Animais , Salicilanilidas/farmacologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose/tratamento farmacológicoRESUMO
We report herein the first systematic crystal structural investigation of azaproline incorporated in homo- and heterochiral diprolyl peptides. The X-ray crystallography data of peptides 1-5 illustrates that stereodynamic nitrogen in azaproline adopted the stereochemistry of neighbouring proline residue without depending on its position in the peptide sequence. Natural bond orbital analysis of crystal structures indicates OazPro -C'Pro of peptides 4 and 5 participating in nâπ* interaction with stabilization energy about 1.21-1.33â kcal/mol. Density functional theory calculations suggested that the endo-proline ring puckering favoured over exo-conformation by 6.72-7.64â kcal/mol. NBO and DFT data reveals that the nâπ* interactions and proline ring puckering stabilize azaproline chirality with the neighbouring proline stereochemistry. The CD, solvent titration, variable-temperature and 2D NMR experimental results further supported the crystal structures conformation.
Assuntos
Nitrogênio , Prolina , Conformação Proteica , Prolina/química , Peptídeos/química , Espectroscopia de Ressonância MagnéticaRESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA) are primary causes of skin and soft tissue infections worldwide. To address the emergency caused due to increasing multidrug-resistant (MDR) bacterial infections, a series of novel fluoro and trifluoromethyl-substituted salicylanilide derivatives were synthesized and their antimicrobial activity was investigated. MIC data reveal that the compounds inhibited S. aureus specifically (MIC 0.25-64 µg/mL). The in vitro cytotoxicity of compounds with MIC < 1 µg/mL against Vero cells led to identification of four compounds (20, 22, 24 and 25) with selectivity index above 10. These four compounds were tested against MDR S. aureus panel. Remarkably, 5-chloro-N-(4'-bromo-3'-trifluoromethylphenyl)-2-hydroxybenzamide (22) demonstrated excellent activity against nine MRSA and three VRSA strains with MIC 0.031-0.062 µg/mL, which is significantly better than the control drugs methicillin and vancomycin. The comparative time-kill kinetic experiment revealed that the effect of bacterial killing of 22 is comparable with vancomycin. Compound 22 did not synergize with or antagonize any FDA-approved antibiotic and reduced pre-formed S. aureus biofilm better than vancomycin. Overall, study suggested that 22 could be further developed as a potent anti-staphylococcal therapeutic.