Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(1): 537-550, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542059

RESUMO

Cyclic amines are ubiquitous structural motifs found in pharmaceuticals and biologically active natural products, making methods for their elaboration via direct C-H functionalization of considerable synthetic value. Herein, we report the development of an iron-based biocatalytic strategy for enantioselective α-C-H functionalization of pyrrolidines and other saturated N-heterocycles via a carbene transfer reaction with diazoacetone. Currently unreported for organometallic catalysts, this transformation can be accomplished in high yields, high catalytic activity, and high stereoselectivity (up to 99:1 e.r. and 20,350 TON) using engineered variants of cytochrome P450 CYP119 from Sulfolobus solfataricus. This methodology was further extended to enable enantioselective α-C-H functionalization in the presence of ethyl diazoacetate as carbene donor (up to 96:4 e.r. and 18,270 TON), and the two strategies were combined to achieve a one-pot as well as a tandem dual C-H functionalization of a cyclic amine substrate with enzyme-controlled diastereo- and enantiodivergent selectivity. This biocatalytic approach is amenable to gram-scale synthesis and can be applied to drug scaffolds for late-stage C-H functionalization. This work provides an efficient and tunable method for direct asymmetric α-C-H functionalization of saturated N-heterocycles, which should offer new opportunities for the synthesis, discovery, and optimization of bioactive molecules.


Assuntos
Aminas , Estereoisomerismo , Catálise , Biocatálise , Aminas/química
2.
Xenobiotica ; 52(3): 240-253, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35382680

RESUMO

The disposition of the hepatoselective ACC inhibitor PF-05221304 (Clesacostat) was studied after a single 50-mg oral dose of [14C]-PF-05221304 to healthy human subjects.Mass balance was achieved with 89.9% of the administered dose recovered in urine and faeces, over the 11-day study period. The total administered radioactivity excreted in faeces and urine was 81.7 and 8.2%, respectively. Unchanged PF-05221304 accounted for 35.6% of the radioactive dose in faeces, suggesting ∼64% of the administered dose was absorbed.PF-05221304 was principally metabolised via oxidative and reductive pathways involving: (a) N-dealkylation, (b) isopropyl group monohydroxylation to yield enantiomeric metabolites (M2a and M2b), (c) hydroxylation on the 3-azaspiro[5.5]undecan-8-one moiety to metabolites M5 and 519c, and (d) carbonyl group reduction to enantiomeric alcohol metabolites M3, and M4. Secondary metabolites (521a, 521b, and 533), derived from a combination of oxidation and reduction of the primary metabolites accounted for ∼14.8% of the dose. In plasma, unchanged PF-05221304 represented 96.1% circulating radioactivity. Metabolites M1, M2b, and M2a represented 1.94, 1.76, and 0.18% of circulating radioactivity, respectively.Overall, these data suggest that PF-05221304 is well absorbed in humans and eliminated largely via phase I metabolism.


Assuntos
Acetil-CoA Carboxilase , Fígado , Administração Oral , Inibidores Enzimáticos , Fezes , Humanos , Hidroxilação
3.
Bioorg Med Chem ; 41: 116205, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000509

RESUMO

The ability to predict chemical structure from DNA sequence has to date been a necessary cornerstone of DNA-encoded library technology. DNA-encoded libraries (DELs) are typically screened by immobilized affinity selection and enriched library members are identified by counting the number of times an individual compound's sequence is observed in the resultant dataset. Those with high signal reads (DEL hits) are subsequently followed up through off-DNA synthesis of the predicted small molecule structures. However, hits followed-up in this manner often fail to translate to confirmed ligands. To address this low conversion rate of DEL hits to off-DNA ligands, we have developed an approach that eliminates the reliance on chemical structure prediction from DNA sequence. Here we describe our method of combining non-combinatorial resynthesis on-DNA following library procedures as a rapid means to assess the probable molecules attached to the DNA barcode. Furthermore, we apply our Bead-Assisted Ligand Isolation Mass Spectrometry (BALI-MS) technique to identify the true binders found within the mixtures of on-DNA synthesis products. Finally, we describe a Normalized Enrichment (NE) metric that allows for the quantitative assessment of affinity selection in these studies. We exemplify how this combined approach enables the identification of putative hit matter against a clinically relevant therapeutic target bisphosphoglycerate mutase, BPGM.


Assuntos
DNA/química , Descoberta de Drogas , Biblioteca Gênica , Espectrometria de Massas/métodos , Técnicas de Química Combinatória , Ligantes , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
4.
J Med Chem ; 63(13): 7268-7292, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32462865

RESUMO

An experimental approach is described for late-stage lead diversification of frontrunner drug candidates using nanomole-scale amounts of lead compounds for structure-activity relationship development. The process utilizes C-H bond activation methods to explore chemical space by transforming candidates into newly functionalized leads. A key to success is the utilization of microcryoprobe nuclear magnetic resonance (NMR) spectroscopy, which permits the use of low amounts of lead compounds (1-5 µmol). The approach delivers multiple analogues from a single lead at nanomole-scale amounts as DMSO-d6 stock solutions with a known structure and concentration for in vitro pharmacology and absorption, distribution, metabolism, and excretion testing. To demonstrate the feasibility of this approach, we have used the antihistamine agent loratadine (1). Twenty-six analogues of loratadine were isolated and fully characterized by NMR. Informative SAR analogues were identified, which display potent affinity for the human histamine H1 receptor and improved metabolic stability.


Assuntos
Loratadina/análogos & derivados , Loratadina/farmacocinética , Relação Estrutura-Atividade , Animais , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dimetil Sulfóxido/química , Cães , Descoberta de Drogas/métodos , Antagonistas não Sedativos dos Receptores H1 da Histamina/química , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Humanos , Ligação de Hidrogênio , Inativação Metabólica , Loratadina/química , Espectroscopia de Ressonância Magnética , Metaloporfirinas/química , Metaloporfirinas/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem , Distribuição Tecidual
5.
Magn Reson Chem ; 55(4): 348-354, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27469271

RESUMO

In situ reaction monitoring tools offer the ability to track the progress of a synthetic reaction in real time to facilitate reaction optimization and provide kinetic/mechanistic insight. Herein, we report the utilization of flow NMR, flow IR, and other off-line spectroscopy tools to monitor the progress of a flow chemistry reaction. The on-line and off-line tools were selected to facilitate the stereoselective kinetic resolution of a key racemic monomer, which lacked a chromophore, making conventional reaction monitoring difficult. Copyright © 2016 John Wiley & Sons, Ltd.

6.
J Med Chem ; 56(13): 5541-52, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23755848

RESUMO

Herein we describe the structure-aided design and synthesis of a series of pyridone-conjugated monobactam analogues with in vitro antibacterial activity against clinically relevant Gram-negative species including Pseudomonas aeruginosa , Klebsiella pneumoniae , and Escherichia coli . Rat pharmacokinetic studies with compound 17 demonstrate low clearance and low plasma protein binding. In addition, evidence is provided for a number of analogues suggesting that the siderophore receptors PiuA and PirA play a role in drug uptake in P. aeruginosa strain PAO1.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Monobactamas/farmacologia , Piridonas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Escherichia coli/efeitos dos fármacos , Concentração Inibidora 50 , Klebsiella pneumoniae/efeitos dos fármacos , Masculino , Testes de Sensibilidade Microbiana , Estrutura Molecular , Monobactamas/química , Monobactamas/farmacocinética , Pseudomonas aeruginosa/efeitos dos fármacos , Piridonas/química , Piridonas/farmacocinética , Ratos , Ratos Wistar
7.
Bioorg Med Chem Lett ; 22(18): 5989-94, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22892121
8.
J Org Chem ; 77(10): 4732-9, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22524537

RESUMO

(S)-3-(methylamino)-3-((R)-pyrrolidin-3-yl)propanenitrile (1) is a key intermediate in the preparation of PF-00951966, (1) a fluoroquinolone antibiotic for use against key pathogens causing community-acquired respiratory tract infections including multidrug resistant (MDR) organisms. The current work describes the development of a highly efficient and stereoselective synthesis of 1 in 10 steps with an overall yield of 24% from readily available benzyloxyacetyl chloride. Two key transformations in the synthetic sequence involve (a) catalytic asymmetric hydrogenation with chiral DM-SEGPHOS-Ru(II) complex to afford ß-hydroxy amide 11b in good yield (73%) and high stereoselectivity (de 98%, ee >99%) after recrystallization and (b) S(N)2 substitution reaction with methylamine to provide diamine 14 with inversion of configuration at the 1'-position in high yield (80%), after efficient purification using a simple acid/base extraction protocol.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Nitrilas/química , Nitrilas/síntese química , Pirrolidinas/química , Pirrolidinas/síntese química , Catálise , Estrutura Molecular , Estereoisomerismo
9.
Tetrahedron ; 66(26): 4816-4826, 2010 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-21379377

RESUMO

This report describes the use of Pd(II)/bis-sulfoxide 1 catalyzed intra- and intermolecular allylic C-H amination reactions to rapidly diversify structures containing a sensitive ß-lactam core similar to that found in the monobactam antibiotic Aztreonam. Pharmacologically interesting oxazolidinone, oxazinanone, and linear amine motifs are rapidly installed with predictable and high selectivities under conditions that use limiting amounts of substrate. Additionally, we demonstrate for the first time that intramolecular C-H amination processes may be accelerated using catalytic amounts of a Lewis acid co-catalyst [Cr(III)(salen)Cl 2].

12.
J Mol Biol ; 354(4): 854-71, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16288920

RESUMO

Hepatitis A virus (HAV) 3C proteinase is a member of the picornain cysteine proteases responsible for the processing of the viral polyprotein, a function essential for viral maturation and infectivity. This and its structural similarity to other 3C and 3C-like proteases make it an attractive target for the development of antiviral drugs. Previous solution NMR studies have shown that a Cys24Ser (C24S) variant of HAV 3C protein, which displays catalytic properties indistinguishable from the native enzyme, is irreversibly inactivated by N-benzyloxycarbonyl-l-serine-beta-lactone (1a) through alkylation of the sulfur atom at the active site Cys172. However, crystallization of an enzyme-inhibitor adduct from the reaction mixture followed by X-ray structural analysis shows only covalent modification of the epsilon2-nitrogen of the surface His102 by the beta-lactone with no reaction at Cys172. Re-examination of the heteronuclear multiple quantum coherence (HMQC) NMR spectra of the enzyme-inhibitor mixture indicates that dual modes of single covalent modification occur with a >/=3:1 ratio of S-alkylation of Cys172 to N-alkylation of His102. The latter product crystallizes readily, probably due to the interaction between the phenyl ring of the N-benzyloxycarbonyl (N-Cbz) moiety and a hydrophobic pocket of a neighboring protein molecule in the crystal. Furthermore, significant structural changes are observed in the active site of the 3C protease, which lead to the formation of a functional catalytic triad with Asp84 accepting one hydrogen bond from His44. Although the 3C protease modified at Cys172 is catalytically inactive, the singly modified His102 N(epsilon2)-alkylated protein displays a significant level of enzymatic activity, which can be further modified/inhibited by N-iodoacetyl-valine-phenylalanine-amide (IVF) (in solution and in crystal) or excessive amount of the same beta-lactone inhibitor (in solution). The success of soaking IVF into HAV 3C-1a crystals demonstrates the usefulness of this new crystal form in the study of enzyme-inhibitor interactions in the proteolytic active site.


Assuntos
Cisteína Endopeptidases/química , Inibidores Enzimáticos/química , Vírus da Hepatite A/enzimologia , Lactonas/química , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Proteases Virais 3C , Substituição de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Lactonas/farmacologia , Espectroscopia de Ressonância Magnética , Engenharia de Proteínas , Serina , Proteínas Virais/genética
13.
Curr Top Med Chem ; 4(12): 1239-53, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15320724

RESUMO

The Picornaviridae are among the smallest icosahedral positive-sense single stranded RNA containing viruses known, and comprise one of the largest and most important families of human and animal pathogens. The hepatitis A virus (HAV) and human rhinovirus (HRV) are important pathogens that belong to the picornavirus family. All picornaviruses have a 3C proteinase that processes an initially biosynthesized precursor protein and is crucial for viral maturation and replication. Although it is a cysteine proteinase, this 3C enzyme has a topology similar to those of the chymotrypsin-like serine proteinases. A series of inhibitors of HAV and HRV 3C proteinases were synthesized and tested as potential lead compounds for the design of therapeutic agents for human picornaviral pathogens. This research shows that thiol-reactive groups or "warheads" such as iodoacetamides, beta-lactones, Michael acceptors, ketones and pseudoxazolones can be used as effective tools to inhibit the HAV and HRV 3C proteinase enzymes. In addition, studies based on enzyme-inhibitor kinetics, mass spectrometry and NMR spectroscopy were effectively used to gain knowledge concerning enzyme-inhibitor mechanism of action and enzyme-inhibitor regiospecific reactivity.


Assuntos
Antivirais/farmacologia , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/farmacologia , Picornaviridae/enzimologia , Animais , Cisteína Endopeptidases/biossíntese , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Picornaviridae/efeitos dos fármacos , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Picornaviridae/virologia , Dobramento de Proteína
14.
J Org Chem ; 67(5): 1536-47, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11871884

RESUMO

Hepatitis A virus (HAV) 3C enzyme is a cysteine proteinase essential for viral replication and infectivity and represents a target for the development of antiviral drugs. A number of serine and threonine beta-lactones were synthesized and tested against HAV 3C proteinase. The D-N-Cbz-serine beta-lactone 5a displays competitive reversible inhibition with a K(i) value of 1.50 x 10(-6) M. Its enantiomer, L-N-Cbz-serine beta-lactone 5b is an irreversible inactivator with k(inact) = 0.70 min(-1), K(Iota) = 1.84 x 10(-4) M and k(inact)/K(Iota) = 3800 M(-1) min(-1). Mass spectrometry and HMQC NMR studies using (13)C-labeled 5b show that inactivation of the enzyme occurs by nucleophilic attack of the cysteine thiol (Cys-172) at the beta-position of the oxetanone ring. Although the N-Cbz-serine beta-lactones 5a and 5b display potent inhibition, other related analogues with an N-Cbz side chain, such as the five-membered ring homoserine gamma-lactones 14a and 14b, the four-membered ring beta-lactam 33, 2-methylene oxetane 34, cyclobutanone 36, and 3-azetidinone 39, fail to give significant inhibition of HAV 3C proteinase, thus demonstrating the importance of the beta-lactone ring for binding.


Assuntos
Inibidores de Cisteína Proteinase/síntese química , Hepatovirus/enzimologia , Serina/análogos & derivados , Serina/química , Treonina/química , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Ciclização , Cisteína Endopeptidases , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Escherichia coli/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Lactonas/síntese química , Lactonas/química , Lactonas/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Orlistate , Serina/síntese química , Serina/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA