RESUMO
The major crop, soybean, forms root nodules with symbiotic rhizobia, providing energy and carbon to the bacteria in exchange for bioavailable nitrogen. The relationship is host-specific and highly host-regulated to maximize energy efficiency. Symbiotic nitrogen fixation (SNF) is greener than synthetic fertilizer for replenishing soil fertility, contributing to yield increase. Nodulation Outer Protein P (NopP) and NopI of the type 3 secretion system (T3SS) of the rhizobium determine host specificity. Sinorhizobium fredii CCBAU25509 (R2) and CCBAU45436 (R4) have different NopP and NopI variants, affecting their respective symbiotic compatibilities with the cultivated soybean C08 and the wild soybean W05. Swapping the NopP variants between R2 and R4 has been shown to switch their compatibility with C08 with the rj2/Rfg1 genotype. To understand the effects of Nops on host compatibility, analyses on the transcriptomic data of W05 roots and nodules inoculated with S. fredii strains containing Nop variants uncovered many differentially expressed genes related to nodulation and nodule functions, providing important information on the effects of Nops on hosts and nodules.
Assuntos
Proteínas de Bactérias , Glycine max , Raízes de Plantas , Nódulos Radiculares de Plantas , Sinorhizobium fredii , Simbiose , Transcriptoma , Glycine max/microbiologia , Glycine max/genética , Sinorhizobium fredii/genética , Proteínas de Bactérias/genética , Nódulos Radiculares de Plantas/microbiologia , Raízes de Plantas/microbiologia , Fixação de Nitrogênio/genéticaRESUMO
Soybean (Glycine max) is an important crop for its nutritional value. Its wild relative, Glycine soja, provides a valuable genetic resource for improving soybean productivity. Root development and differentiation are essential for soybean plants to take up water and nutrients, store energy and anchor themselves. Long noncoding RNAs (lncRNAs) have been reported to play critical roles in various biological processes. However, the spatiotemporal landscape of lncRNAs during early root development and differentiation in soybeans is scarcely characterized. Using RNA sequencing and transcriptome assembly, we identified 1578 lncRNAs in G. max and 1454 in G. soja, spanning various root portions and time points. Differential expression analysis revealed 82 and 69 lncRNAs exhibiting spatiotemporally differential expression patterns in G. max and G. soja, respectively, indicating their involvement in the early stage of root architecture formation. By elucidating multiple competitive endogenous RNA (ceRNA) networks involving lncRNAs, microRNAs and protein-coding RNAs, we unveiled intricate regulatory mechanisms of lncRNA in early root development and differentiation. Our efforts significantly expand the transcriptome annotations of soybeans, unravel the dynamic landscapes of lncRNAs during early root development and differentiation, and provide valuable resources into the field of soybean root research.
RESUMO
Rhizobia interact with leguminous plants in the soil to form nitrogen fixing nodules in which rhizobia and plant cells coexist. Although there are emerging studies on rhizobium-associated nitrogen fixation in cereals, the legume-rhizobium interaction is more well-studied and usually serves as the model to study rhizobium-mediated nitrogen fixation in plants. Rhizobia play a crucial role in the nitrogen cycle in many ecosystems. However, rhizobia are highly sensitive to variations in soil conditions and physicochemical properties (i.e. moisture, temperature, salinity, pH, and oxygen availability). Such variations directly caused by global climate change are challenging the adaptive capabilities of rhizobia in both natural and agricultural environments. Although a few studies have identified rhizobial genes that confer adaptation to different environmental conditions, the genetic basis of rhizobial stress tolerance remains poorly understood. In this review, we highlight the importance of improving the survival of rhizobia in soil to enhance their symbiosis with plants, which can increase crop yields and facilitate the establishment of sustainable agricultural systems. To achieve this goal, we summarize the key challenges imposed by global climate change on rhizobium-plant symbiosis and collate current knowledge of stress tolerance-related genes and pathways in rhizobia. And finally, we present the latest genetic engineering approaches, such as synthetic biology, implemented to improve the adaptability of rhizobia to changing environmental conditions.
Assuntos
Mudança Climática , Engenharia Genética , Fixação de Nitrogênio , Rhizobium , Estresse Fisiológico , Simbiose , Rhizobium/genética , Rhizobium/metabolismo , Rhizobium/fisiologia , Fixação de Nitrogênio/genética , Microbiologia do Solo , Fabaceae/microbiologia , Fabaceae/genética , Adaptação Fisiológica/genética , Solo/química , Plantas/microbiologiaRESUMO
Isoflavones, secondary metabolites with numerous health benefits, are predominantly found in legume seeds, especially soybean; however, their contents in domesticated soybean seeds are highly variable. Wild soybeans are known for higher seed isoflavone contents than cultivars. Here we used experimental and modelling approaches on wild soybean (W05) and cultivated soybean (C08) to delineate factors influencing isoflavone accumulation. We found imported nutrients were converted into storage compounds, with isoflavone accumulation in W05 seeds being faster than in C08 ones. The isoflavone accumulation during seed development was simulated using context-specific cotyledon metabolic models of four developmental stages on cultivar C08, and the metabolic burden imposed by increasing biomass was evaluated. Trade-off analyses between biomass and isoflavone suggest that high biomass requirement in cultivars could limit the reallocation of resources for secondary metabolite production. Isoflavone production in mature seeds was also influenced by biomass compositions. Seeds with higher carbohydrate contents favour isoflavone production, while those with highest protein and oil contents had lowest isoflavone contents. Although seeds could synthesize isoflavones on their own, the predicted fluxes from biosynthesis alone were lower than the empirical levels. Shadow price analyses indicated that isoflavone accumulation depended on both intrinsic biosynthesis and direct contribution from the plant.
RESUMO
BACKGROUND: Climate change induces perturbation in the global water cycle, profoundly impacting water availability for agriculture and therefore global food security. Water stress encompasses both drought (i.e. water scarcity) that causes the drying of soil and subsequent plant desiccation, and flooding, which results in excess soil water and hypoxia for plant roots. Terrestrial plants have evolved diverse mechanisms to cope with soil water stress, with the root system serving as the first line of defense. The responses of roots to water stress can involve both structural and physiological changes, and their plasticity is a vital feature of these adaptations. Genetic methodologies have been extensively employed to identify numerous genetic loci linked to water stress-responsive root traits. This knowledge is immensely important for developing crops with optimal root systems that enhance yield and guarantee food security under water stress conditions. RESULTS: This review focused on the latest insights into modifications in the root system architecture and anatomical features of legume roots in response to drought and flooding stresses. Special attention was given to recent breakthroughs in understanding the genetic underpinnings of legume root development under water stress. The review also described various root phenotyping techniques and examples of their applications in different legume species. Finally, the prevailing challenges and prospective research avenues in this dynamic field as well as the potential for using root system architecture as a breeding target are discussed. CONCLUSIONS: This review integrated the latest knowledge of the genetic components governing the adaptability of legume roots to water stress, providing a reference for using root traits as the new crop breeding targets.
Assuntos
Mapeamento Cromossômico , Desidratação , Fabaceae , Fenótipo , Raízes de Plantas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Fabaceae/genética , Fabaceae/fisiologia , Adaptação Fisiológica/genética , Secas , Inundações , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologiaRESUMO
Legumes perform symbiotic nitrogen fixation through rhizobial bacteroids housed in specialised root nodules. The biochemical process is energy-intensive and consumes a huge carbon source to generate sufficient reducing power. To maintain the symbiosis, malate is supplied by legume nodules to bacteroids as their major carbon and energy source in return for ammonium ions and nitrogenous compounds. To sustain the carbon supply to bacteroids, nodule cells undergo drastic reorganisation of carbon metabolism. Here, a comprehensive quantitative comparison of the mitochondrial proteomes between root nodules and uninoculated roots was performed using data-independent acquisition proteomics, revealing the modulations in nodule mitochondrial proteins and pathways in response to carbon reallocation. Corroborated our findings with that from the literature, we believe nodules preferably allocate cytosolic phosphoenolpyruvates towards malate synthesis in lieu of pyruvate synthesis, and nodule mitochondria prefer malate over pyruvate as the primary source of NADH for ATP production. Moreover, the differential regulation of respiratory chain-associated proteins suggests that nodule mitochondria could enhance the efficiencies of complexes I and IV for ATP synthesis. This study highlighted a quantitative proteomic view of the mitochondrial adaptation in soybean nodules.
RESUMO
Cimex species are ectoparasites that exclusively feed on warm-blooded animals such as birds and mammals. Three cimicid species are known to be persistent pests for humans, including the tropical bed bug Cimex hemipterus, common bed bug Cimex lectularius, and Eastern bat bug Leptocimex boueti. To date, genomic information is restricted to the common bed bug C. lectularius, which limits understanding their biology and to provide controls of bed bug infestations. Here, a chromosomal-level genome assembly of C. hemipterus (495 Mb [megabase pairs]) contained on 16 pseudochromosomes (scaffold N50 = 34 Mb), together with 9 messenger RNA and small RNA transcriptomes were obtained. In comparison between hemipteran genomes, we found that the tetraspanin superfamily was expanded in the Cimex ancestor. This study provides the first genome assembly for the tropical bed bug C. hemipterus, and offers an unprecedented opportunity to address questions relating to bed bug infestations, as well as genomic evolution to hemipterans more widely.
RESUMO
The reduction in crop yield caused by pathogens and pests presents a significant challenge to global food security. Genetic engineering, which aims to bolster plant defence mechanisms, emerges as a cost-effective solution for disease control. However, this approach often incurs a growth penalty, known as the growth-defence trade-off. The precise molecular mechanisms governing this phenomenon are still not completely understood, but they generally fall under two main hypotheses: a "passive" redistribution of metabolic resources, or an "active" regulatory choice to optimize plant fitness. Despite the knowledge gaps, considerable practical endeavours are in the process of disentangling growth from defence. The plant microbiome, encompassing both above- and below-ground components, plays a pivotal role in fostering plant growth and resilience to stresses. There is increasing evidence which indicates that plants maintain intimate associations with diverse, specifically selected microbial communities. Meta-analyses have unveiled well-coordinated, two-way communications between plant shoots and roots, showcasing the capacity of plants to actively manage their microbiota for balancing growth with immunity, especially in response to pathogen incursions. This review centers on successes in making use of specific root-associated microbes to mitigate the growth-defence trade-off, emphasizing pivotal advancements in unravelling the mechanisms behind plant growth and defence. These findings illuminate promising avenues for future research and practical applications.
Assuntos
Microbiota , Desenvolvimento Vegetal , Imunidade Vegetal , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/imunologia , Plantas/microbiologia , Plantas/imunologia , Plantas/metabolismo , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/imunologia , Produtos Agrícolas/genéticaRESUMO
BACKGROUND: Single nucleotide polymorphism (SNP) markers play significant roles in accelerating breeding and basic crop research. Several soybean SNP panels have been developed. However, there is still a lack of SNP panels for differentiating between wild and cultivated populations, as well as for detecting polymorphisms within both wild and cultivated populations. RESULTS: This study utilized publicly available resequencing data from over 3,000 soybean accessions to identify differentiating and highly conserved SNP and insertion/deletion (InDel) markers between wild and cultivated soybean populations. Additionally, a naturally occurring mutant gene library was constructed by analyzing large-effect SNPs and InDels in the population. CONCLUSION: The markers obtained in this study are associated with numerous genes governing agronomic traits, thus facilitating the evaluation of soybean germplasms and the efficient differentiation between wild and cultivated soybeans. The natural mutant gene library permits the quick identification of individuals with natural mutations in functional genes, providing convenience for accelerating soybean breeding using reverse genetics.
Assuntos
Glycine max , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Glycine max/genética , Genoma de Planta , Biblioteca Gênica , Melhoramento VegetalRESUMO
Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.
Assuntos
Secas , Fabaceae , Genoma de Planta , Fabaceae/genética , Fabaceae/fisiologia , Estresse Fisiológico/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , FilogeniaRESUMO
Food security is important for the ever-growing global population. Soybean, Glycine max (L.) Merr., is cultivated worldwide providing a key source of food, protein and oil. Hence, it is imperative to maintain or to increase its yield under different conditions including challenges caused by abiotic and biotic stresses. In recent years, the soybean pod-sucking stinkbug Riptortus pedestris has emerged as an important agricultural insect pest in East, South and Southeast Asia. Here, we present a genomics resource for R. pedestris including its genome assembly, messenger RNA (mRNA) and microRNA (miRNA) transcriptomes at different developmental stages and from different organs. As insect hormone biosynthesis genes (genes involved in metamorphosis) and their regulators such as miRNAs are potential targets for pest control, we analyzed the sesquiterpenoid (juvenile) and ecdysteroid (molting) hormone biosynthesis pathway genes including their miRNAs and relevant neuropeptides. Temporal gene expression changes of these insect hormone biosynthesis pathways were observed at different developmental stages. Similarly, a diet-specific response in gene expression was also observed in both head and salivary glands. Furthermore, we observed that microRNAs (bantam, miR-14, miR-316, and miR-263) of R. pedestris fed with different types of soybeans were differentially expressed in the salivary glands indicating a diet-specific response. Interestingly, the opposite arms of miR-281 (-5p and -3p), a miRNA involved in regulating development, were predicted to target Hmgs genes of R. pedestris and soybean, respectively. These observations among others highlight stinkbug's responses as a function of its interaction with soybean. In brief, the results of this study not only present salient findings that could be of potential use in pest management and mitigation but also provide an invaluable resource for R. pedestris as an insect model to facilitate studies on plant-pest interactions.
Assuntos
Heterópteros , Hormônios de Inseto , MicroRNAs , Animais , Glycine max/genética , Heterópteros/genética , Transcriptoma , MicroRNAs/genética , Perfilação da Expressão GênicaRESUMO
Tree canopies are known to elevate atmospheric inputs of both mercury (Hg) and methylmercury (MeHg). While foliar uptake of gaseous Hg is well documented, little is known regarding the temporal dynamics and origins of MeHg in tree foliage, which represents typically less than 1% of total Hg in foliage. In this work, we examined the foliar total Hg and MeHg content by following the growth of five individual trees of American Beech (Fagus grandifolia) for one growing season (April-November, 2017) in North Carolina, USA. We show that similar to other studies foliar Hg content increased almost linearly over time, with daily accumulation rates ranging from 0.123 to 0.161 ng/g/day. However, not all trees showed linear increases of foliar MeHg content along the growing season; we found that 2 out of 5 trees showed elevated foliar MeHg content at the initial phase of the growing season but their MeHg content declined through early summer. However, foliar MeHg content among all 5 trees showed eventual increases through the end of the growing season, proving that foliage is a net accumulator of MeHg while foliar gain of biomass did not "dilute" MeHg content.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Árvores , Monitoramento Ambiental , Mercúrio/análise , Biomassa , Poluentes Químicos da Água/análiseRESUMO
BACKGROUND: Lepidoptera (butterflies and moths) is one of the most geographically widespread insect orders in the world, and its species play important and diverse ecological and applied roles. Climate change is one of the biggest challenges to biodiversity this century, and lepidopterans are vulnerable to climate change. Temperature-dependent gene expression differences are of relevance under the ongoing climate crisis. However, little is known about how climate affects gene expression in lepidopterans and the ecological consequences of this, particularly with respect to genes with biased expression in one of the sexes. The common yellow butterfly, Eurema hecabe (Family Pieridae), is one of the most geographically widespread lepidopterans that can be found in Asia, Africa, and Australia. Nevertheless, what temperature-dependent effects there may be and whether the effects differ between the sexes remain largely unexplored. RESULTS: Here, we generated high-quality genomic resources for E. hecabe along with transcriptomes from eight developmental stages. Male and female butterflies were subjected to varying temperatures to assess sex-specific gene expression responses through mRNA and microRNA transcriptomics. We find that there are more temperature-dependent sex-biased genes in females than males, including genes that are involved in a range of biologically important functions, highlighting potential ecological impacts of increased temperatures. Further, by considering available butterfly data on sex-biased gene expression in a comparative genomic framework, we find that the pattern of sex-biased gene expression identified in E. hecabe is highly species-specific, rather than conserved across butterfly species, suggesting that sex-biased gene expression responses to climate change are complex in butterflies. CONCLUSIONS: Our study lays the foundation for further understanding of differential responses to environmental stress in a widespread lepidopteran model and demonstrates the potential complexity of sex-specific responses of lepidopterans to climate change.
Assuntos
Borboletas , Feminino , Masculino , Animais , Borboletas/genética , Temperatura , Genômica , Austrália , BiodiversidadeRESUMO
Complete, gapless telomere-to-telomere chromosome assemblies are a prerequisite for comprehensively investigating the architecture of complex regions, like centromeres or telomeres and removing uncertainties in the order, spacing, and orientation of genes. Using complementary genomics technologies and assembly algorithms, we developed highly contiguous, nearly gapless, genome assemblies for two economically important soybean [Glycine max (L.) Merr] cultivars (Williams 82 and Lee). The centromeres were distinctly annotated on all the chromosomes of both assemblies. We further found that the canonical telomeric repeats were present at the telomeres of all chromosomes of both Williams 82 and Lee genomes. A total of 10 chromosomes in Williams 82 and eight in Lee were entirely reconstructed in single contigs without any gap. Using the combination of ab initio prediction, protein homology, and transcriptome evidence, we identified 58,287 and 56,725 protein-coding genes in Williams 82 and Lee, respectively. The genome assemblies and annotations will serve as a valuable resource for studying soybean genomics and genetics and accelerating soybean improvement.
Assuntos
Genoma , Glycine max , Glycine max/genética , Genômica , AlgoritmosRESUMO
BACKGROUND: Plant-based meat (PBM) takes up ever-increasing market shares and draws great attention from both customers and retailers these days. However, little is known about the nutritional quality of PBM products. OBJECTIVE: This study intended to profile and evaluate the overview nutrition of PBM with equivalent meat products on the Hong Kong market. METHODS: We conducted a cross-sectional survey of 274 PBM and 151 meat products from 27 different brands on the Hong Kong market in October 2022. The nutritional differences between PBM and meat products were assessed using analysis of covariance (ANCOVA) and two independent sample t-test. The nutritional quality of PBMs was evaluated according to nutrient reference value, front-of-package (FoP) criteria and nutritional score. RESULTS: PBM had relatively lower energy density, total fat, saturated fat, protein, and salt compared to meat. According to the FoP criteria, 91.36%, 17.88%, and 99.34% of PBMs were labeled as medium to high in fat, salt, and sugar, respectively. Through ingredient analysis of 81 PBM products, soy and canola were the main source of protein and fat. CONCLUSIONS: PBM products have a roughly better nutrient quality compared to muscle-based meat, though there is still potential for further refinement in terms of production, consumption, and regulation.
Assuntos
Produtos da Carne , Avaliação Nutricional , Estudos Transversais , Hong Kong , Estado Nutricional , Cloreto de Sódio , Cloreto de Sódio na DietaRESUMO
MicroRNAs (miRNAs) are important regulators of plant biological processes, including soybean nodulation. One miRNA, miR4407, was identified in soybean roots and nodules. However, the function of miR4407 in soybean is still unknown. MiR4407, unique to soybean, positively regulates lateral root emergence and root structures and represses a root-specific ISOPENTENYLTRANSFERASE (GmIPT3). By altering the expression of miR4407 and GmIPT3, we investigated the role of miR4407 in lateral root and nodule development. Both miR4407 and GmIPT3 are expressed in the inner root cortex and nodule primordia. Upon rhizobial inoculation, miR4407 was downregulated while GmIPT3 was upregulated. Overexpressing miR4407 reduced the number of nodules in transgenic soybean hairy roots while overexpressing the wild-type GmIPT3 or a miR4407-resistant GmIPT3 mutant (mGmIPT3) significantly increased the nodule number. The mechanism of miR4407 and GmIPT3 functions was also linked to autoregulation of nodulation (AON), where miR4407 overexpression repressed miR172c and activated its target, GmNNC1, turning on AON. Exogenous CK mimicked the effects of GmIPT3 overexpression on miR172c, supporting the notion that GmIPT3 regulates nodulation by enhancing root-derived CK. Overall, our data revealed a new miRNA-mediated regulatory mechanism of nodulation in soybean. MiR4407 showed a dual role in lateral root and nodule development.
Assuntos
Glycine max , MicroRNAs , Glycine max/metabolismo , Nodulação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismoRESUMO
Yellow-seed trait is a desirable breeding characteristic of rapeseed (Brassica napus) that could greatly improve seed oil yield and quality. However, the underlying mechanisms controlling this phenotype in B. napus plants are difficult to discern because of their complexity. Here, we assemble high-quality genomes of yellow-seeded (GH06) and black-seeded (ZY821). Combining in-depth fine mapping of a quantitative trait locus (QTL) for seed color with other omics data reveal BnA09MYB47a, encoding an R2R3-MYB-type transcription factor, as the causal gene of a major QTL controlling the yellow-seed trait. Functional studies show that sequence variation of BnA09MYB47a underlies the functional divergence between the yellow- and black-seeded B. napus. The black-seed allele BnA09MYB47aZY821, but not the yellow-seed allele BnA09MYB47aGH06, promotes flavonoid biosynthesis by directly activating the expression of BnTT18. Our discovery suggests a possible approach to breeding B. napus for improved commercial value and facilitates flavonoid biosynthesis studies in Brassica crops.