Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(706): eabn4722, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37494472

RESUMO

Musculoskeletal diseases affect up to 20% of adults worldwide. The gut microbiome has been implicated in inflammatory conditions, but large-scale metagenomic evaluations have not yet traced the routes by which immunity in the gut affects inflammatory arthritis. To characterize the community structure and associated functional processes driving gut microbial involvement in arthritis, the Inflammatory Arthritis Microbiome Consortium investigated 440 stool shotgun metagenomes comprising 221 adults diagnosed with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis and 219 healthy controls and individuals with joint pain without an underlying inflammatory cause. Diagnosis explained about 2% of gut taxonomic variability, which is comparable in magnitude to inflammatory bowel disease. We identified several candidate microbes with differential carriage patterns in patients with elevated blood markers for inflammation. Our results confirm and extend previous findings of increased carriage of typically oral and inflammatory taxa and decreased abundance and prevalence of typical gut clades, indicating that distal inflammatory conditions, as well as local conditions, correspond to alterations to the gut microbial composition. We identified several differentially encoded pathways in the gut microbiome of patients with inflammatory arthritis, including changes in vitamin B salvage and biosynthesis and enrichment of iron sequestration. Although several of these changes characteristic of inflammation could have causal roles, we hypothesize that they are mainly positive feedback responses to changes in host physiology and immune homeostasis. By connecting taxonomic alternations to functional alterations, this work expands our understanding of the shifts in the gut ecosystem that occur in response to systemic inflammation during arthritis.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Inflamação , Fenótipo , Redes e Vias Metabólicas
2.
Microbiome ; 9(1): 33, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516266

RESUMO

BACKGROUND: Identifying which taxa are targeted by immunoglobulins can uncover important host-microbe interactions. Immunoglobulin binding of commensal taxa can be assayed by sorting bound bacteria from samples and using amplicon sequencing to determine their taxonomy, a technique most widely applied to study Immunoglobulin A (IgA-Seq). Previous experiments have scored taxon binding in IgA-Seq datasets by comparing abundances in the IgA bound and unbound sorted fractions. However, as these are relative abundances, such scores are influenced by the levels of the other taxa present and represent an abstract combination of these effects. Diversity in the practical approaches of prior studies also warrants benchmarking of the individual stages involved. Here, we provide a detailed description of the design strategy for an optimised IgA-Seq protocol. Combined with a novel scoring method for IgA-Seq datasets that accounts for the aforementioned effects, this platform enables accurate identification and quantification of commensal gut microbiota targeted by host immunoglobulins. RESULTS: Using germ-free and Rag1-/- mice as negative controls, and a strain-specific IgA antibody as a positive control, we determine optimal reagents and fluorescence-activated cell sorting (FACS) parameters for IgA-Seq. Using simulated IgA-Seq data, we show that existing IgA-Seq scoring methods are influenced by pre-sort relative abundances. This has consequences for the interpretation of case-control studies where there are inherent differences in microbiota composition between groups. We show that these effects can be addressed using a novel scoring approach based on posterior probabilities. Finally, we demonstrate the utility of both the IgA-Seq protocol and probability-based scores by examining both novel and published data from in vivo disease models. CONCLUSIONS: We provide a detailed IgA-Seq protocol to accurately isolate IgA-bound taxa from intestinal samples. Using simulated and experimental data, we demonstrate novel probability-based scores that adjust for the compositional nature of relative abundance data to accurately quantify taxon-level IgA binding. All scoring approaches are made available in the IgAScores R package. These methods should improve the generation and interpretation of IgA-Seq datasets and could be applied to study other immunoglobulins and sample types. Video abstract.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunoglobulina A/imunologia , Simbiose , Animais , Bactérias/genética , Bactérias/imunologia , Bactérias/isolamento & purificação , Conjuntos de Dados como Assunto , Feminino , Microbioma Gastrointestinal/genética , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Elife ; 92020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32716298

RESUMO

T cell cross-reactivity ensures that diverse pathogen-derived epitopes encountered during a lifetime are recognized by the available TCR repertoire. A feature of cross-reactivity where previous exposure to one microbe can alter immunity to subsequent, non-related pathogens has been mainly explored for viruses. Yet cross-reactivity to additional microbes is important to consider, especially in HIV infection where gut-intestinal barrier dysfunction could facilitate T cell exposure to commensal/pathogenic microbes. Here we evaluated the cross-reactivity of a 'public', HIV-specific, CD8 T cell-derived TCR (AGA1 TCR) using MHC class I yeast display technology. Via screening of MHC-restricted libraries comprising ~2×108 sequence-diverse peptides, AGA1 TCR specificity was mapped to a central peptide di-motif. Using the top TCR-enriched library peptides to probe the non-redundant protein database, bacterial peptides that elicited functional responses by AGA1-expressing T cells were identified. The possibility that in context-specific settings, MHC class I proteins presenting microbial peptides influence virus-specific T cell populations in vivo is discussed.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Histocompatibilidade Classe I , Receptores de Antígenos de Linfócitos T/metabolismo , Reações Cruzadas , Células HL-60 , Humanos
4.
Proc Natl Acad Sci U S A ; 113(34): E5044-51, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27503894

RESUMO

The mammalian gastrointestinal tract is colonized by a high-density polymicrobial community where bacteria compete for niches and resources. One key competition strategy includes cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), a multiprotein needle-like apparatus that injects effector proteins into prokaryotic and/or eukaryotic target cells. However, the contribution of T6SS antibacterial activity during pathogen invasion of the gut has not been demonstrated. We report that successful establishment in the gut by the enteropathogenic bacterium Salmonella enterica serovar Typhimurium requires a T6SS encoded within Salmonella pathogenicity island-6 (SPI-6). In an in vitro setting, we demonstrate that bile salts increase SPI-6 antibacterial activity and that S Typhimurium kills commensal bacteria in a T6SS-dependent manner. Furthermore, we provide evidence that one of the two T6SS nanotube subunits, Hcp1, is required for killing Klebsiella oxytoca in vitro and that this activity is mediated by the specific interaction of Hcp1 with the antibacterial amidase Tae4. Finally, we show that K. oxytoca is killed in the host gut in an Hcp1-dependent manner and that the T6SS antibacterial activity is essential for Salmonella to establish infection within the host gut. Our findings provide an example of pathogen T6SS-dependent killing of commensal bacteria as a mechanism to successfully colonize the host gut.


Assuntos
Antibiose , Proteínas de Bactérias/toxicidade , Salmonelose Animal/microbiologia , Salmonella typhimurium/patogenicidade , Sistemas de Secreção Tipo VI/genética , Fatores de Virulência/toxicidade , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/farmacologia , Meios de Cultura/química , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Ilhas Genômicas , Klebsiella oxytoca/efeitos dos fármacos , Klebsiella oxytoca/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Salmonelose Animal/patologia , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
5.
PLoS Pathog ; 10(12): e1004527, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474319

RESUMO

In order to be transmitted, a pathogen must first successfully colonize and multiply within a host. Ecological principles can be applied to study host-pathogen interactions to predict transmission dynamics. Little is known about the population biology of Salmonella during persistent infection. To define Salmonella enterica serovar Typhimurium population structure in this context, 129SvJ mice were oral gavaged with a mixture of eight wild-type isogenic tagged Salmonella (WITS) strains. Distinct subpopulations arose within intestinal and systemic tissues after 35 days, and clonal expansion of the cecal and colonic subpopulation was responsible for increases in Salmonella fecal shedding. A co-infection system utilizing differentially marked isogenic strains was developed in which each mouse received one strain orally and the other systemically by intraperitoneal (IP) injection. Co-infections demonstrated that the intestinal subpopulation exerted intraspecies priority effects by excluding systemic S. Typhimurium from colonizing an extracellular niche within the cecum and colon. Importantly, the systemic strain was excluded from these distal gut sites and was not transmitted to naïve hosts. In addition, S. Typhimurium required hydrogenase, an enzyme that mediates acquisition of hydrogen from the gut microbiota, during the first week of infection to exert priority effects in the gut. Thus, early inhibitory priority effects are facilitated by the acquisition of nutrients, which allow S. Typhimurium to successfully compete for a nutritional niche in the distal gut. We also show that intraspecies colonization resistance is maintained by Salmonella Pathogenicity Islands SPI1 and SPI2 during persistent distal gut infection. Thus, important virulence effectors not only modulate interactions with host cells, but are crucial for Salmonella colonization of an extracellular intestinal niche and thereby also shape intraspecies dynamics. We conclude that priority effects and intraspecies competition for colonization niches in the distal gut control Salmonella population assembly and transmission.


Assuntos
Ceco/microbiologia , Colo/microbiologia , Infecções por Salmonella/transmissão , Salmonella typhimurium/patogenicidade , Animais , Ceco/imunologia , Colo/imunologia , Ilhas Genômicas/imunologia , Camundongos , Infecções por Salmonella/genética , Infecções por Salmonella/imunologia , Infecções por Salmonella/patologia , Salmonella typhimurium/imunologia
6.
Appl Environ Microbiol ; 75(6): 1658-66, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19139224

RESUMO

Vibrio cholerae strains are capable of inhabiting multiple niches in the aquatic environment and in some cases cause disease in humans. However, the ecology and biodiversity of these bacteria in environmental settings remains poorly understood. We used the genomic fingerprinting technique enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) to profile 835 environmental isolates from waters and sediments obtained at nine sites along the central California coast. We identified 115 ERIC-PCR genotypes from 998 fingerprints, with a reproducibility of 98.5% and a discriminatory power of 0.971. When the temporal dynamics at a subset of sampling sites were explored, several genotypes provided evidence for cosmopolitan or geographically restricted distributions, and other genotypes displayed nonrandom patterns of cooccurrence. Partial Mantel tests confirmed that genotypic similarity of isolates across all sampling events was correlated with environmental similarity (0.04 < or = r < or = 0.05), temporal proximity (r = 0.09), and geographic distance (r = 0.09). A neutral community model for all sampling events explained 61% of the variation in genotype abundance. Cooccurrence indices (C-score, C-board, and Combo) were significantly different than expected by chance, suggesting that the V. cholerae population may have a competitive structure, especially at the regional scale. Even though stochastic processes are undoubtedly important in generating biogeographic patterns in diversity, deterministic factors appear to play a significant, albeit small, role in shaping the V. cholerae population structure in this system.


Assuntos
Variação Genética , Geografia , Sedimentos Geológicos/microbiologia , Vibrio cholerae/genética , Microbiologia da Água , Proteínas de Bactérias/genética , California , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Humanos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Vibrio cholerae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA