Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38895333

RESUMO

The synthesis and degradation rates of proteins form an essential component of gene expression control. Heavy water labeling has been used in conjunction with mass spectrometry to measure protein turnover rates, but the optimal analytical approaches to derive turnover rates from the isotopomer patterns of deuterium labeled peptides continue to be a subject of research. Here we describe a method, which comprises a reverse lookup of numerically approximated peptide isotope envelopes, coupled to the selection of optimal isotopomer pairs based on peptide sequence, to calculate the molar fraction of new peptide synthesis in heavy water labeling mass spectrometry experiments. We validated this approach using an experimental calibration curve comprising mixtures of fully unlabeled and fully labeled proteomes. We then re-analyzed 17 proteome-wide turnover experiments from four mouse organs, and showed that the method increases the coverage of well-fitted peptides in protein turnover experiments by 25-82%. The method is implemented in the Riana software tool for protein turnover analysis, and may avail ongoing efforts to study the synthesis and degradation kinetics of proteins in animals on a proteome-wide scale. What's new: We describe a reverse lookup method to calculate the molar fraction of new synthesis from numerically approximated peptide isotopomer profiles in heavy water labeling mass spectrometry experiments. Using an experimental calibration curve comprising mixtures of fully unlabeled and fully labeled proteomes at various proportions, we show that this method provides a straightforward way to calculate the proportion of new proteins in a protein pool from arbitrarily chosen isotopomer ratios. We next analyzed which of the isotopomer pairs within the peptide isotope envelope yielded isotopomer time courses that fit most closely to kinetic models, and found that the identity of the isotopomer pair depends partially on the number of deuterium accessible labeling sites of the peptide. We next derived a strategy to automatically select the isotopomer pairs to calculate turnover rates based on peptide sequence, and showed that this increases the coverage of existing proteome-wide turnover experiments in multiple data sets of the mouse heart, liver, kidney, and skeletal muscle by up to 25-82%.

2.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645170

RESUMO

The fetal genetic program orchestrates cardiac development and the re-expression of fetal genes is thought to underlie cardiac disease and adaptation. Here, a proteomics ratio test using mass spectrometry is applied to find protein isoforms with statistically significant usage differences in the fetal vs. postnatal mouse heart. Changes in isoform usage ratios are pervasive at the protein level, with 104 significant events observed, including 88 paralog-derived isoform switching events and 16 splicing-derived isoform switching events between fetal and postnatal hearts. The ratiometric proteomic comparisons rediscovered hallmark fetal gene signatures including a postnatal switch from fetal ß (MYH7) toward ɑ (MYH6) myosin heavy chains and from slow skeletal muscle (TNNI1) toward cardiac (TNNI3) troponin I. Altered usages in metabolic proteins are prominent, including a platelet to muscle phosphofructokinase (PFKP - PFKM), enolase 1 to 3 (ENO1 - ENO3), and alternative splicing of pyruvate kinase M2 toward M1 (PKM2 - PKM1) isoforms in glycolysis. The data also revealed a parallel change in mitochondrial proteins in cardiac development, suggesting the shift toward aerobic respiration involves also a remodeling of the mitochondrial protein isoform proportion. Finally, a number of glycolytic protein isoforms revert toward their fetal forms in adult hearts under pathological cardiac hypertrophy, suggesting their functional roles in adaptive or maladaptive response, but this reversal is partial. In summary, this work presents a catalog of ratiometric protein markers of the fetal genetic program of the mouse heart, including previously unreported splice isoform markers.

3.
Nat Commun ; 15(1): 2207, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467653

RESUMO

The spatial and temporal distributions of proteins are critical to protein function, but cannot be directly assessed by measuring protein bundance. Here we describe a mass spectrometry-based proteomics strategy, Simultaneous Proteome Localization and Turnover (SPLAT), to measure concurrently protein turnover rates and subcellular localization in the same experiment. Applying the method, we find that unfolded protein response (UPR) has different effects on protein turnover dependent on their subcellular location in human AC16 cells, with proteome-wide slowdown but acceleration among stress response proteins in the ER and Golgi. In parallel, UPR triggers broad differential localization of proteins including RNA-binding proteins and amino acid transporters. Moreover, we observe newly synthesized proteins including EGFR that show a differential localization under stress than the existing protein pools, reminiscent of protein trafficking disruptions. We next applied SPLAT to an induced pluripotent stem cell derived cardiomyocyte (iPSC-CM) model of cancer drug cardiotoxicity upon treatment with the proteasome inhibitor carfilzomib. Paradoxically, carfilzomib has little effect on global average protein half-life, but may instead selectively disrupt sarcomere protein homeostasis. This study provides a view into the interactions of protein spatial and temporal dynamics and demonstrates a method to examine protein homeostasis regulations in stress and drug response.


Assuntos
Proteoma , Proteostase , Humanos , Proteoma/metabolismo , Resposta a Proteínas não Dobradas , Espectrometria de Massas , Complexo de Golgi/metabolismo
4.
J Proteome Res ; 23(8): 3161-3173, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38456420

RESUMO

A computational analysis of mass spectrometry data was performed to uncover alternative splicing derived protein variants across chambers of the human heart. Evidence for 216 non-canonical isoforms was apparent in the atrium and the ventricle, including 52 isoforms not documented on SwissProt and recovered using an RNA sequencing derived database. Among non-canonical isoforms, 29 show signs of regulation based on statistically significant preferences in tissue usage, including a ventricular enriched protein isoform of tensin-1 (TNS1) and an atrium-enriched PDZ and LIM Domain 3 (PDLIM3) isoform 2 (PDLIM3-2/ALP-H). Examined variant regions that differ between alternative and canonical isoforms are highly enriched with intrinsically disordered regions. Moreover, over two-thirds of such regions are predicted to function in protein binding and RNA binding. The analysis here lends further credence to the notion that alternative splicing diversifies the proteome by rewiring intrinsically disordered regions, which are increasingly recognized to play important roles in the generation of biological function from protein sequences.


Assuntos
Processamento Alternativo , Proteínas Intrinsicamente Desordenadas , Isoformas de Proteínas , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Ventrículos do Coração/metabolismo , Proteoma/genética , Proteoma/metabolismo , Átrios do Coração/metabolismo , Miocárdio/metabolismo , Miocárdio/química , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/química , Espectrometria de Massas , Tensinas/metabolismo , Tensinas/genética , Especificidade de Órgãos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA