Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
2.
Biophys J ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38384132

RESUMO

By avoiding ensemble averaging, single-molecule methods provide novel means of extracting mechanistic insights into function of material and molecules at the nanoscale. However, one of the big limitations is the vast amount of data required for analyzing and extracting the desired information, which is time-consuming and user dependent. Here, we introduce Deep-LASI, a software suite for the manual and automatic analysis of single-molecule traces, interactions, and the underlying kinetics. The software can handle data from one-, two- and three-color fluorescence data, and was particularly designed for the analysis of two- and three-color single-molecule fluorescence resonance energy transfer experiments. The functionalities of the software include: the registration of multiple-channels, trace sorting and categorization, determination of the photobleaching steps, calculation of fluorescence resonance energy transfer correction factors, and kinetic analyses based on hidden Markov modeling or deep neural networks. After a kinetic analysis, the ensuing transition density plots are generated, which can be used for further quantification of the kinetic parameters of the system. Each step in the workflow can be performed manually or with the support of machine learning algorithms. Upon reading in the initial data set, it is also possible to perform the remaining analysis steps automatically without additional supervision. Hence, the time dedicated to the analysis of single-molecule experiments can be reduced from days/weeks to minutes. After a thorough description of the functionalities of the software, we also demonstrate the capabilities of the software via the analysis of a previously published dynamic three-color DNA origami structure fluctuating between three states. With the drastic time reduction in data analysis, new types of experiments become realistically possible that complement our currently available palette of methodologies for investigating the nanoworld.

3.
Nat Commun ; 15(1): 690, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263337

RESUMO

It is estimated that two-thirds of all proteins in higher organisms are composed of multiple domains, many of them containing discontinuous folds. However, to date, most in vitro protein folding studies have focused on small, single-domain proteins. As a model system for a two-domain discontinuous protein, we study the unfolding/refolding of a slow-folding double mutant of the maltose binding protein (DM-MBP) using single-molecule two- and three-color Förster Resonance Energy Transfer experiments. We observe a dynamic folding intermediate population in the N-terminal domain (NTD), C-terminal domain (CTD), and at the domain interface. The dynamic intermediate fluctuates rapidly between unfolded states and compact states, which have a similar FRET efficiency to the folded conformation. Our data reveals that the delayed folding of the NTD in DM-MBP is imposed by an entropic barrier with subsequent folding of the highly dynamic CTD. Notably, accelerated DM-MBP folding is routed through the same dynamic intermediate within the cavity of the GroEL/ES chaperone system, suggesting that the chaperonin limits the conformational space to overcome the entropic folding barrier. Our study highlights the subtle tuning and co-dependency in the folding of a discontinuous multi-domain protein.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Dobramento de Proteína , Proteínas Ligantes de Maltose , Entropia , Projetos de Pesquisa
4.
Adv Mater ; 36(18): e2311457, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38243660

RESUMO

The extracellular space (ECS) is an important barrier against viral attack on brain cells, and dynamic changes in ECS microstructure characteristics are closely related to the progression of viral encephalitis in the brain and the efficacy of antiviral drugs. However, mapping the precise morphological and rheological features of the ECS in viral encephalitis is still challenging so far. Here, a robust approach is developed using single-particle diffusional fingerprinting of quantum dots combined with machine learning to map ECS features in the brain and predict the efficacy of antiviral encephalitis drugs. These results demonstrated that this approach can characterize the microrheology and geometry of the brain ECS at different stages of viral infection and identify subtle changes induced by different drug treatments. This approach provides a potential platform for drug proficiency assessment and is expected to offer a reliable basis for the clinical translation of drugs.


Assuntos
Antivirais , Encefalite Viral , Espaço Extracelular , Aprendizado de Máquina , Pontos Quânticos , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Espaço Extracelular/metabolismo , Animais , Pontos Quânticos/química , Encefalite Viral/tratamento farmacológico , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Reologia , Humanos
5.
iScience ; 26(12): 108382, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047065

RESUMO

The NLRP3 inflammasome is a central component of the innate immune system. Its activation leads to formation of the ASC speck, a supramolecular assembly of the inflammasome adaptor protein ASC. Different models, based on ASC overexpression, have been proposed for the structure of the ASC speck. Using dual-color 3D super-resolution imaging (dSTORM and DNA-PAINT), we visualized the ASC speck structure following NLRP3 inflammasome activation using endogenous ASC expression. A complete structure was only obtainable by labeling with both anti-ASC antibodies and nanobodies. The complex varies in diameter between ∼800 and 1000 nm, and is composed of a dense core with emerging filaments. Dual-color confocal fluorescence microscopy indicated that the ASC speck does not colocalize with the microtubule-organizing center at late time points after Nigericin stimulation. From super-resolution images of whole cells, the ASC specks were sorted into a pseudo-time sequence indicating that they become denser but not larger during formation.

6.
Nat Commun ; 14(1): 6564, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848439

RESUMO

Single-molecule experiments have changed the way we explore the physical world, yet data analysis remains time-consuming and prone to human bias. Here, we introduce Deep-LASI (Deep-Learning Assisted Single-molecule Imaging analysis), a software suite powered by deep neural networks to rapidly analyze single-, two- and three-color single-molecule data, especially from single-molecule Förster Resonance Energy Transfer (smFRET) experiments. Deep-LASI automatically sorts recorded traces, determines FRET correction factors and classifies the state transitions of dynamic traces all in ~20-100 ms per trajectory. We benchmarked Deep-LASI using ground truth simulations as well as experimental data analyzed manually by an expert user and compared the results with a conventional Hidden Markov Model analysis. We illustrate the capabilities of the technique using a highly tunable L-shaped DNA origami structure and use Deep-LASI to perform titrations, analyze protein conformational dynamics and demonstrate its versatility for analyzing both total internal reflection fluorescence microscopy and confocal smFRET data.


Assuntos
Aprendizado Profundo , Imagem Individual de Molécula , Humanos , Imagem Individual de Molécula/métodos , DNA/química , Microscopia , Conformação Proteica , Transferência Ressonante de Energia de Fluorescência/métodos
7.
Genes Dev ; 37(7-8): 336-350, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37072228

RESUMO

The majority of our genome is composed of repeated DNA sequences that assemble into heterochromatin, a highly compacted structure that constrains their mutational potential. How heterochromatin forms during development and how its structure is maintained are not fully understood. Here, we show that mouse heterochromatin phase-separates after fertilization, during the earliest stages of mammalian embryogenesis. Using high-resolution quantitative imaging and molecular biology approaches, we show that pericentromeric heterochromatin displays properties consistent with a liquid-like state at the two-cell stage, which change at the four-cell stage, when chromocenters mature and heterochromatin becomes silent. Disrupting the condensates results in altered transcript levels of pericentromeric heterochromatin, suggesting a functional role for phase separation in heterochromatin function. Thus, our work shows that mouse heterochromatin forms membrane-less compartments with biophysical properties that change during development and provides new insights into the self-organization of chromatin domains during mammalian embryogenesis.


Assuntos
Cromatina , Heterocromatina , Animais , Camundongos , Embrião de Mamíferos , Genoma , Mamíferos/genética
8.
Nat Methods ; 20(4): 523-535, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973549

RESUMO

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Transferência Ressonante de Energia de Fluorescência/métodos , Reprodutibilidade dos Testes , Proteínas/química , Conformação Molecular , Laboratórios
9.
Small ; 19(17): e2204726, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36709484

RESUMO

Feedback-based single-particle tracking (SPT) is a powerful technique for investigating particle behavior with very high spatiotemporal resolution. The ability to follow different species and their interactions independently adds a new dimension to the information available from SPT. However, only a few approaches have been expanded to multiple colors and no method is currently available that can follow two differently labeled biomolecules in 4 dimensions independently. In this proof-of-concept paper, the new modalities available when performing 3D orbital tracking with a second detection channel are demonstrated. First, dual-color tracking experiments are described studying independently diffusing particles of different types. For interacting particles where their motion is correlated, a second modality is implemented where a particle is tracked in one channel and the position of the second fluorescence species is monitored in the other channel. As a third modality, 3D orbital tracking is performed in one channel while monitoring its spectral signature in a second channel. This last modality is used to successfully readout accurate Förster Resonance Energy Transfer (FRET) values over time while tracking a mobile particle.

10.
Proc Natl Acad Sci U S A ; 120(4): e2211896120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652471

RESUMO

Fluorescence correlation spectroscopy is a versatile tool for studying fast conformational changes of biomolecules especially when combined with Förster resonance energy transfer (FRET). Despite the many methods available for identifying structural dynamics in FRET experiments, the determination of the forward and backward transition rate constants and thereby also the equilibrium constant is difficult when two intensity levels are involved. Here, we combine intensity correlation analysis with fluorescence lifetime information by including only a subset of photons in the autocorrelation analysis based on their arrival time with respect to the excitation pulse (microtime). By fitting the correlation amplitude as a function of microtime gate, the transition rate constants from two fluorescence-intensity level systems and the corresponding equilibrium constants are obtained. This shrinking-gate fluorescence correlation spectroscopy (sg-FCS) approach is demonstrated using simulations and with a DNA origami-based model system in experiments on immobilized and freely diffusing molecules. We further show that sg-FCS can distinguish photophysics from dynamic intensity changes even if a dark quencher, in this case graphene, is involved. Finally, we unravel the mechanism of a FRET-based membrane charge sensor indicating the broad potential of the method. With sg-FCS, we present an algorithm that does not require prior knowledge and is therefore easily implemented when an autocorrelation analysis is carried out on time-correlated single-photon data.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fótons , Espectrometria de Fluorescência/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Modelos Biológicos
11.
Nat Commun ; 13(1): 5402, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104339

RESUMO

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models.


Assuntos
Benchmarking , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Modelos Teóricos
12.
Phys Chem Chem Phys ; 24(25): 15397-15405, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704886

RESUMO

Pyrroloquinoline quinone (PQQ) is a redox cofactor in calcium- and lanthanide-dependent alcohol dehydrogenases that has been known and studied for over 40 years. Despite its long history, many questions regarding its fluorescence properties, speciation in solution and in the active site of alcohol dehydrogenase remain open. Here we investigate the effects of pH and temperature on the distribution of different PQQ species (H3PQQ to PQQ3- in addition to water adducts and in complex with lanthanides) with NMR and UV-Vis spectroscopy as well as time-resolved laser-induced fluorescence spectroscopy (TRLFS). Using a europium derivative from a new, recently-discovered class of lanthanide-dependent methanol dehydrogenase (MDH) enzymes, we utilized two techniques to monitor Ln binding to the active sites of these enzymes. Employing TRLFS, we were able to follow Eu(III) binding directly to the active site of MDH using its luminescence and could quantify three Eu(III) states: Eu(III) in the active site of MDH, but also in solution as PQQ-bound Eu(III) and in the aquo-ion form. Additionally, we used the antenna effect to study PQQ and simultaneously Eu(III) in the active site.


Assuntos
Elementos da Série dos Lantanídeos , Cofator PQQ , Oxirredutases do Álcool/química , Metanol/química , Cofator PQQ/química
13.
Sci Rep ; 12(1): 4682, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304498

RESUMO

Protein assembly plays an important role throughout all phyla of life, both physiologically and pathologically. In particular, aggregation and polymerization of proteins are key-strategies that regulate cellular function. In recent years, methods to experimentally study the assembly process on a single-molecule level have been developed. This progress concomitantly has triggered the question of how to analyze this type of single-filament data adequately and what experimental conditions are necessary to allow a meaningful interpretation of the analysis. Here, we developed two analysis methods for single-filament data: the visitation analysis and the average-rate analysis. We benchmarked and compared both approaches with the classic dwell-time-analysis frequently used to study microscopic association and dissociation rates. In particular, we tested the limitations of each analysis method along the lines of the signal-to-noise ratio, the sampling rate, and the labeling efficiency and bleaching rate of the fluorescent dyes used in single-molecule fluorescence experiments. Finally, we applied our newly developed methods to study the monomer assembly of actin at the single-molecule-level in the presence of the class II nucleator Cappuccino and the WH2 repeats of Spire. For Cappuccino, our data indicated fast elongation circumventing a nucleation phase whereas, for Spire, we found that the four WH2 motifs are not sufficient to promote de novo nucleation of actin.


Assuntos
Actinas , Proteínas dos Microfilamentos , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Polimerização
14.
Viruses ; 14(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35215933

RESUMO

The viral polyprotein Gag plays a central role for HIV-1 assembly, release and maturation. Proteolytic processing of Gag by the viral protease is essential for the structural rearrangements that mark the transition from immature to mature, infectious viruses. The timing and kinetics of Gag processing are not fully understood. Here, fluorescence lifetime imaging microscopy and single virus tracking are used to follow Gag processing in nascent HIV-1 particles in situ. Using a Gag polyprotein labelled internally with eCFP, we show that proteolytic release of the fluorophore from Gag is accompanied by an increase in its fluorescence lifetime. By tracking nascent virus particles in situ and analyzing the intensity and fluorescence lifetime of individual traces, we detect proteolytic cleavage of eCFP from Gag in a subset (6.5%) of viral particles. This suggests that for the majority of VLPs, Gag processing occurs with a delay after particle assembly.


Assuntos
Infecções por HIV/virologia , HIV-1/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , HIV-1/química , HIV-1/genética , HIV-1/crescimento & desenvolvimento , Humanos , Cinética , Microscopia de Fluorescência , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
15.
Mol Cell ; 82(3): 555-569.e7, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063133

RESUMO

In the eukaryotic cytosol, the Hsp70 and the Hsp90 chaperone machines work in tandem with the maturation of a diverse array of client proteins. The transfer of nonnative clients between these systems is essential to the chaperoning process, but how it is regulated is still not clear. We discovered that NudC is an essential transfer factor with an unprecedented mode of action: NudC interacts with Hsp40 in Hsp40-Hsp70-client complexes and displaces Hsp70. Then, the interaction of NudC with Hsp90 allows the direct transfer of Hsp40-bound clients to Hsp90 for further processing. Consistent with this mechanism, NudC increases client activation in vitro as well as in cells and is essential for cellular viability. Together, our results show the complexity of the cooperation between the major chaperone machineries in the eukaryotic cytosol.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Nucleares/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Sobrevivência Celular , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Células K562 , Cinética , Simulação de Acoplamento Molecular , Proteínas Nucleares/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Biophys J ; 121(2): 327-335, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34896371

RESUMO

Actin filament dynamics underlie key cellular processes. Although the elongation of actin filaments has been extensively studied, the mechanism of nucleation remains unclear. The micromolar concentrations needed for filament formation have prevented direct observation of nucleation dynamics on the single molecule level. To overcome this limitation, we have used the attoliter excitation volume of zero-mode waveguides to directly monitor the early steps of filament assembly. Immobilizing single gelsolin molecules as a nucleator at the bottom of the zero-mode waveguide, we could visualize the actin filament nucleation process. The process is surprisingly dynamic, and two distinct populations during gelsolin-mediated nucleation are observed. The two populations are defined by the stability of the actin dimers and determine whether elongation occurs. Furthermore, by using an inhibitor to block flattening, a conformational change in actin associated with filament formation, elongation was prevented. These observations indicate that a conformational transition and pathway competition determine the nucleation of gelsolin-mediated actin filament formation.


Assuntos
Actinas , Gelsolina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Gelsolina/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615715

RESUMO

Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.


Assuntos
Genoma Viral/genética , Dobramento de RNA/genética , RNA Viral/genética , Rotavirus/crescimento & desenvolvimento , Empacotamento do Genoma Viral/genética , Proteínas não Estruturais Virais/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Rotavirus/genética , Rotavirus/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389669

RESUMO

Cellular function depends on the correct folding of proteins inside the cell. Heat-shock proteins 70 (Hsp70s), being among the first molecular chaperones binding to nascently translated proteins, aid in protein folding and transport. They undergo large, coordinated intra- and interdomain structural rearrangements mediated by allosteric interactions. Here, we applied a three-color single-molecule Förster resonance energy transfer (FRET) combined with three-color photon distribution analysis to compare the conformational cycle of the Hsp70 chaperones DnaK, Ssc1, and BiP. By capturing three distances simultaneously, we can identify coordinated structural changes during the functional cycle. Besides the known conformations of the Hsp70s with docked domains and open lid and undocked domains with closed lid, we observed additional intermediate conformations and distance broadening, suggesting flexibility of the Hsp70s in adopting the states in a coordinated fashion. Interestingly, the difference of this distance broadening varied between DnaK, Ssc1, and BiP. Study of their conformational cycle in the presence of substrate peptide and nucleotide exchange factors strengthened the observation of additional conformational intermediates, with BiP showing coordinated changes more clearly compared to DnaK and Ssc1. Additionally, DnaK and BiP were found to differ in their selectivity for nucleotide analogs, suggesting variability in the recognition mechanism of their nucleotide-binding domains for the different nucleotides. By using three-color FRET, we overcome the limitations of the usual single-distance approach in single-molecule FRET, allowing us to characterize the conformational space of proteins in higher detail.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas de Choque Térmico HSP70/metabolismo , Organelas/metabolismo , Imagem Individual de Molécula , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Am Chem Soc ; 143(28): 10541-10546, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34228932

RESUMO

In metal-organic frameworks (MOFs), organic linkers are subject to postsynthetic exchange (PSE) when new linkers reach sites of PSE by diffusion. Here, we show that during PSE, a bulky organic linker is able to penetrate narrow-window MOF crystals. The bulky linker migrates by continuously replacing the linkers gating the otherwise impassable windows and serially occupying an array of backbone sites, a mechanism we term through-backbone diffusion. A necessary consequence of this process is the accumulation of missing-linker defects along the diffusion trajectories. Using fluorescence intensity and lifetime imaging microscopy, we found a gradient of missing-linker defects from the crystal surface to the interior, consistent with the spatial progression of PSE. Our success in incorporating bulky functional groups via PSE extends the scope of MOFs that can be used to host sizable, sophisticated guest species, including large catalysts or biomolecules, which were previously deemed only incorporable into MOFs of very large windows.

20.
Angew Chem Int Ed Engl ; 60(41): 22578-22584, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310831

RESUMO

Chlorophyll and heme are among the "pigments of life", tetrapyrrolic structures, without which life on Earth would not be possible. Their catabolites, the phyllobilins and the bilins, respectively, share not only structural features, but also a similar story: Long considered waste products of detoxification processes, important bioactivities for both classes have now been demonstrated. For phyllobilins, however, research on physiological roles is sparse. Here, we introduce actin, the major component of the cytoskeleton, as the first discovered target of phyllobilins and as a novel target of bilins. We demonstrate the inhibition of actin dynamics in vitro and effects on actin and related processes in cancer cells. A direct interaction with G-actin is shown by in silico studies and confirmed by affinity chromatography. Our findings open a new chapter in bioactivities of tetrapyrroles-especially phyllobilins-for which they form the basis for broad implications in plant science, ecology, and physiology.


Assuntos
Actinas/antagonistas & inibidores , Clorofila/química , Heme/química , Pigmentos Biológicos/farmacologia , Tetrapirróis/farmacologia , Actinas/metabolismo , Humanos , Pigmentos Biológicos/química , Tetrapirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA