Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Atmos Chem Phys ; 17(18): 11541-11566, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32602860

RESUMO

The representation of upper tropospheric/lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern Era Retrospective Analysis for Research and Applications), ERA-I (the ECMWF interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution: For example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterization. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude southern hemisphere winter upper tropospheric jets and multiple tropopauses, and in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry climate models.

2.
J Geophys Res Atmos ; 119(3): 1612-1625, 2014 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28845378

RESUMO

Differences between stratospheric water vapor measurements by NOAA frost point hygrometers (FPHs) and the Aura Microwave Limb Sounder (MLS) are evaluated for the period August 2004 through December 2012 at Boulder, Colorado, Hilo, Hawaii, and Lauder, New Zealand. Two groups of MLS profiles coincident with the FPH soundings at each site are identified using unique sets of spatiotemporal criteria. Before evaluating the differences between coincident FPH and MLS profiles, each FPH profile is convolved with the MLS averaging kernels for eight pressure levels from 100 to 26 hPa (~16 to 25 km) to reduce its vertical resolution to that of the MLS water vapor retrievals. The mean FPH - MLS differences at every pressure level (100 to 26 hPa) are well within the combined measurement uncertainties of the two instruments. However, the mean differences at 100 and 83 hPa are statistically significant and negative, ranging from -0.46 ± 0.22 ppmv (-10.3 ± 4.8%) to -0.10 ± 0.05 ppmv (-2.2 ± 1.2%). Mean differences at the six pressure levels from 68 to 26 hPa are on average 0.8% (0.04 ppmv), and only a few are statistically significant. The FPH - MLS differences at each site are examined for temporal trends using weighted linear regression analyses. The vast majority of trends determined here are not statistically significant, and most are smaller than the minimum trends detectable in this analysis. Except at 100 and 83 hPa, the average agreement between MLS retrievals and FPH measurements of stratospheric water vapor is better than 1%.

3.
Appl Opt ; 44(7): 1332-41, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15765714

RESUMO

A new method for the retrieval of the spectral refractive indices of micrometer-sized particles from infrared aerosol extinction spectra has been developed. With this method we use a classical damped harmonic-oscillator model of molecular absorption in conjunction with Mie scattering to model extinction spectra, which we then fit to the measurements using a numerical optimal estimation algorithm. The main advantage of this method over the more traditional Kramers-Kronig approach is that it allows the full complex refractive-index spectra, along with the parameters of the particle size distribution, to be retrieved from a single extinction spectrum. The retrieval scheme has been extensively characterized and has been found to provide refractive indices with a maximum uncertainty of approximately 10% (with a minimum of approximately 0.1%). Comparison of refractive indices calculated from measurements of a ternary solution of HNO3, H2SO4, and H2O with those published in J. Phys. Chem. A 104, 783 (2000) show similar differences as found by other authors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA