Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 871: 161953, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740071

RESUMO

The Po plain (Italy) is one of the largest floodplains in Europe that needs environmental restoration. To achieve this goal, the knowledge of the 'environment' (water, bed sediments and vegetation) of the canals crossing such floodplain is necessary. The water flow of the canals was kept low for hydraulic safety purposes from October to March (NIR), and high for irrigation purposes from April to September (IR). Within this framework, this study aimed to assess in 9 sites of the east part of Po plain 1) the canals' environment quality in terms of vegetation diversity, and water and bed sediment physicochemical properties; and 2) how these features are influenced by canal managements and landscape properties. Water was monthly sampled both in NIR and IR periods, the bed sediments were sampled in summer and winter periods, while the vegetation was recorded in spring and autumn. The low water flow during NIR worsened the water quality by increasing the concentrations of nutrients and salts. A higher salt and nutrient concentrations were observed both in water and bed sediments of canals crossing areas with fine texture alluvial deposits than in those flowing through medium texture alluvial deposits. Further, higher nutrient and salt concentrations were observed for the canals used as collectors of the water coming from other canals. Despite the differences observed for the bed sediments and water quality, the vegetation type and biodiversity did not show differences among the study sites probably because affected by the land use of the surrounding landscape. Indeed, the canals cross agricultural land which limit the developments of natural vegetation and do not promote plant biodiversity. Overall, the present study found out the key role of landscape properties and canal managements on 'canal environment' quality which need to be considered to perform an appropriate reclamation of such environments.


Assuntos
Agricultura , Recuperação e Remediação Ambiental , Biodiversidade , Itália , Qualidade da Água , Sedimentos Geológicos , Rios
2.
Sci Rep ; 12(1): 12088, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840607

RESUMO

We demonstrate a wide distribution and abundance of hybrids between the river species Ranunculus aquatilis, R. fluitans and R. kauffmannii with the still water species R. circinatus (Batrachium, Ranunculaceae) in rivers of two postglacial landscapes of East Europe, i.e., Lithuania and Central European Russia. The Batrachium species and hybrid diversity is higher in the rivers of Lithuania (4 species and 3 hybrids vs. 2 and 1) and represented mainly by western R. aquatilis, R. fluitans and their hybrids whereas in Central European Russia, the East European species R. kauffmannii and its hybrid are the only dominant forms. Hybrids make up about 3/4 of the studied individuals found in 3/4 of the studied river localities in Lithuania and 1/3 of the individuals found in 1/3 of the localities in Central European Russia. Such extensive hybridization in river Batrachium may have arisen due to the specificity of rivers as open-type ecosystems. It may have been intensified by the transformation of river ecosystems by human activities and the postglacial character of the studied landscapes combined with ongoing climate change. Almost all hybrids of R. aquatilis, R. fluitans and R. kauffmannii originated from unidirectional crossings in which R. circinatus acted as a pollen donor. Such crossings could be driven by higher frequency and abundance of R. circinatus populations as well as by some biological mechanisms. Two hybrids, R. circinatus × R. fluitans and R. circinatus × R. kauffmannii, were formally described as R. × redundans and R. × absconditus. We found a hybrid which most likely originated from additional crossing between R. aquatilis and R. circinatus × R. fluitans.


Assuntos
Ranunculaceae , Ranunculus , Ecossistema , Europa (Continente) , Humanos , Ranunculus/genética , Rios
3.
Plants (Basel) ; 11(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448785

RESUMO

Current agricultural problems, such as the decline of freshwater and fertile land, foster saline agriculture development. Salicornia and Sarcocornia species, with a long history of human consumption, are ideal models for developing halophyte crops. A greenhouse experiment was set up to compare the response of the perennial Sarcocornia fruticosa and the two annual Salicornia europaea and S. veneta to 30 days of salt stress (watering with 700 mM NaCl) and water deficit (complete withholding of irrigation) separate treatments, followed by 15 days of recovery. The three species showed high tolerance to salt stress, based on the accumulation of ions (Na+, Cl-, Ca2+) in the shoots and the synthesis of organic osmolytes. These defence mechanisms were partly constitutive, as active ion transport to the shoots and high levels of glycine betaine were also observed in non-stressed plants. The three halophytes were sensitive to water stress, albeit S. fruticosa to a lesser extent. In fact, S. fruticosa showed a lower reduction in shoot fresh weight than S. europaea or S. veneta, no degradation of photosynthetic pigments, a significant increase in glycine betaine contents, and full recovery after the water stress treatment. The observed differences could be due to a better adaptation of S. fruticosa to a drier natural habitat, as compared to the two Salicornia species. However, a more gradual stress-induced senescence in the perennial S. fruticosa may contribute to greater drought tolerance in this species.

4.
Plants (Basel) ; 10(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562812

RESUMO

Owing to the high interspecific biodiversity, halophytes have been regarded as a tool for understanding salt tolerance mechanisms in plants in view of their adaptation to climate change. The present study addressed the physiological response to salinity of six halophyte species common in the Mediterranean area: Artemisia absinthium, Artemisia vulgaris, Atriplex halimus, Chenopodium album, Salsola komarovii, and Sanguisorba minor. A 161-day pot experiment was conducted, watering the plants with solutions at increasing NaCl concentration (control, 100, 200, 300 and 600 mM). Fresh weight (FW), leaf stomatal conductance (GS), relative water content (RWC) and water potential (WP) were measured. A principal component analysis (PCA) was used to describe the relationships involving the variables that accounted for data variance. A. halimus was shown to be the species most resilient to salinity, being able to maintain FW up to 300 mM, and RWC and WP up to 600 mM; it was followed by C. album. Compared to them, A. vulgaris and S. komarovii showed intermediate performances, achieving the highest FW (A. vulgaris) and GS (S. komarovii) under salinity. Lastly, S. minor and A. absinthium exhibited the most severe effects with a steep drop in GS and RWC. Lower WP values appeared to be associated with best halophyte performances under the highest salinity levels, i.e., 300 and 600 mM NaCl.

5.
Sci Rep ; 10(1): 17645, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077795

RESUMO

Estuaries are dynamic and selective environments that provide frequent opportunities for the turnover of Phragmites australis populations. We studied Phragmites genetic diversity patterns in three of the major deltas of China, viz. the Yellow River, the Yangtze and the Liaohe, in relation to Phragmites global phylogeography and soil salinity. We found that two distantly related P. australis haplotypes, each with intercontinental distribution, co-occur in these deltas in China. One is European Phragmites (Haplotype O) and is related to P. japonicus; the other (Haplotype P) has its range in East Asia and Australia and is related to the Asian tropical species P. karka. The two haplotypes have differing salt tolerance, with Haplotype O in areas with the highest salinity and Haplotype P in areas with the lowest. Introgressed hybrids of Haplotype P with P. karka, and F1 hybrids with Haplotype O, have higher salt tolerance than Haplotype P. Phylogenetic diversity appears as the factor that better explains population structure and salinity tolerance in these estuaries. Future research may explain whether the two P. australis haplotypes evolved in East Asia, and East Asia is a center of Phragmites diversity, or are introduced and a threat to P. japonicus and P. karka.


Assuntos
Poaceae/genética , Plantas Tolerantes a Sal/genética , China , Estuários , Variação Genética/genética , Haplótipos/genética , Repetições de Microssatélites/genética , Filogenia , Poaceae/fisiologia , Tolerância ao Sal/genética
6.
Sci Total Environ ; 747: 141102, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32795788

RESUMO

Paludiculture, sustainable and climate-smart land use of formerly drained, rewetted organic soils, can produce significant biomass in peatlands whilst potentially restoring several additional wetland services. However, the site conditions that allow maximum biomass production and nutrient removal by paludiculture crops have rarely been studied. We studied the relationship between soil characteristics, including plant-available nutrients, peak biomass, stand age, harvest period, and nutrient removal potential for two important paludiculture species, Typha latifolia and Phragmites australis, on rewetted peat and mineral soils in a large-scale European survey. T. latifolia and P. australis were able to produce an aboveground peak biomass of 10-30 t dry matter ha-1 y-1 and absorbed significant amounts of carbon, nitrogen, phosphorus, and potassium in stands older than 3 years. They were able to grow in a wide range of abiotic soil conditions. Low N:P ratios (5-9) and low N content (< 2%) in T. latifolia tissue suggest N limitation, but P uptake was still surprisingly high. P. australis had higher N:P ratios (8-25) and was less responsive to nutrients, suggesting a higher nutrient use efficiency. However, both species could still produce significant biomass at lower nutrient loads and in winter, when water content was low and nutrient removal still reasonable. Based on this European wetland survey, paludiculture holds a great potential to combine peat preservation, water purification, nutrient removal, and a high biomass production. Paludicrops take up substantial amounts of nutrients, and both summer and winter harvests provide an effective way to sequester carbon in a range of high-valued biomass products and to control nutrient effluxes from rewetted sites at the landscape scale.


Assuntos
Typhaceae , Biomassa , Minerais , Nitrogênio/análise , Nutrientes , Fósforo , Poaceae , Solo , Áreas Alagadas
7.
Plants (Basel) ; 9(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354055

RESUMO

Salinity is a major constraint for plant growth in world areas exposed to salinization. Sorghum bicolor (L.) Moench is a species that has received attention for biomass production in saline areas thanks to drought and salinity tolerance. To improve the knowledge in the mechanisms of salt tolerance and sodium allocation to plant organs, a pot experiment was set up. The experimental design combined three levels of soil salinity (0, 3, and 6 dS m-1) with three levels of water salinity (0, 2-4, and 4-8 dS m-1) and two water regimes: no salt leaching (No SL) and salt leaching (SL). This latter regime was carried out with the same three water salinity levels and resulted in average +81% water supply. High soil salinity associated with high water salinity (HSS-HWS) affected plant growth and final dry weight (DW) to a greater extent in No SL (-87% DW) than SL (-42% DW). Additionally, HSS-HWS determined a stronger decrease in leaf water potential and relative water content under No SL than SL. HSS-HWS with No SL resulted in a higher Na bioaccumulation from soil to plant and in translocation from roots to stem and, finally, leaves, which are the most sensitive organ. Higher water availability (SL), although determining higher salt input when associated with HWS, limited Na bioaccumulation, prevented Na translocation to leaves, and enhanced selective absorption of Ca vs. Na. At plant level, higher Na accumulation was associated with lower Ca and Mg accumulation, especially in No SL. This indicates altered ion homeostasis and cation unbalance.

8.
Ecol Evol ; 10(3): 1106-1118, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32076501

RESUMO

Among the traits whose relevance for plant invasions has recently been suggested are genome size (the amount of nuclear DNA) and ploidy level. So far, research on the role of genome size in invasiveness has been mostly based on indirect evidence by comparing species with different genome sizes, but how karyological traits influence competition at the intraspecific level remains unknown. We addressed these questions in a common-garden experiment evaluating the outcome of direct intraspecific competition among 20 populations of Phragmites australis, represented by clones collected in North America and Europe, and differing in their status (native and invasive), genome size (small and large), and ploidy levels (tetraploid, hexaploid, or octoploid). Each clone was planted in competition with one of the others in all possible combinations with three replicates in 45-L pots. Upon harvest, the identity of 21 shoots sampled per pot was revealed by flow cytometry and DNA analysis. Differences in performance were examined using relative proportions of shoots of each clone, ratios of their aboveground biomass, and relative yield total (RYT). The performance of the clones in competition primarily depended on the clone status (native vs. invasive). Measured in terms of shoot number or aboveground biomass, the strongest signal observed was that North American native clones always lost in competition to the other two groups. In addition, North American native clones were suppressed by European natives to a similar degree as by North American invasives. North American invasive clones had the largest average shoot biomass, but only by a limited, nonsignificant difference due to genome size. There was no effect of ploidy on competition. Since the North American invaders of European origin are able to outcompete the native North American clones, we suggest that their high competitiveness acts as an important driver in the early stages of their invasion.

9.
Sci Total Environ ; 664: 1150-1161, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30901787

RESUMO

Tall wetland graminoids with rapid growth, high productivity and wide tolerance of biotic and abiotic stresses are potentially valuable bioenergy crops, especially when grown in rewetted peat soils for biomass (paludiculture). Using wetland plants as renewable bioenergy crops instead of fossil fuels has the ecological benefits of reducing greenhouse gas (GHG) emissions, improving water quality and conserving peat soils. As these potential crops will grow in peat that differs in nutrient availability, not only will their biomass productivity be affected, but also the biomass quality for bioenergy may be altered. We set up five different nutrient availability treatments in waterlogged peat soil to simulate different nutrient environments for wetland plant cultivation. Seven wetland plants suitable for paludiculture (Typha latifolia, Arundo plinii, Arundo donax and four distinct genotypes of Phragmites australis from Denmark, The Netherlands, Romania and Italy) were selected to test responses of biomass production and tissue quality to different nutrient availability. Due to their high biomass productivity, T. latifolia, A. donax, Dutch (NL) and Romanian (RO) P. australis had the greatest potential to produce bioenergy feedstock. All taxa survived when cultivated with very low nutrient availability, especially NL and RO P. australis and T. latifolia. Moreover, biomass quality was both species-specific and element-specific, affected by increasing nutrient availability. Overall, T. latifolia had the lowest tissue concentrations of S and Si as well as high concentrations of Ca, and therefore the best tissue quality for combustion both at low and high nutrient availability. These results will provide crucial information for choosing appropriate crops and managements and promote the success of culturing wetland plants as bioenergy feedstock.


Assuntos
Poaceae/fisiologia , Typhaceae/fisiologia , Eliminação de Resíduos Líquidos , Áreas Alagadas , Biomassa , Nutrientes/metabolismo , Poaceae/crescimento & desenvolvimento , Typhaceae/crescimento & desenvolvimento , Poluentes Químicos da Água
10.
Ecol Evol ; 8(5): 2440-2452, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29531666

RESUMO

Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors-geographic, environmental, and human-related-to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human-related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between-range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human-made habitats in North America.

11.
AoB Plants ; 10(2): ply014, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29593854

RESUMO

The tall-statured grasses in the genus Phragmites are dominant vegetation in wetlands worldwide and thus play a vital role in ecosystem functioning. As a result, Phragmites spp. are some of the most widely studied plants; particularly in areas where changes to their abundances have occurred, most notably in Europe and North America. In southern Africa a pattern of reed expansion has occurred in recent decades that has shown a similar trend to cryptic invasions reported in North America. This study used molecular techniques to explore the phylogeography of P. australis and P. mauritianus in the region to investigate whether the expansion is due to an alien invasion or local factors such as wetland disturbance. Three haplotypes were found and all haplotypes are presently considered African haplotypes (haplotype K for P. australis and haplotype V and AP for P. mauritianus). Both Phragmites spp. were found to have high genetic diversity. Microsatellite and grass-waxy analysis also found evidence of hybridization between the two species. No evidence was found for a recent cryptic invasion of non-native haplotypes in southern Africa. The expansion of P. australis and P. mauritianus is therefore most likely a result of anthropogenic activity. Identifying and mitigating the human-mediated factors that may be contributing to reed growth, such as eutrophication and sedimentation, should be the focus of future management protocols.

12.
Ecology ; 99(1): 79-90, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29313970

RESUMO

The literature suggests that small genomes promote invasion in plants, but little is known about the interaction of genome size with other traits or about the role of genome size during different phases of the invasion process. By intercontinental comparison of native and invasive populations of the common reed Phragmites australis, we revealed a distinct relationship between genome size and invasiveness at the intraspecific level. Monoploid genome size was the only significant variable that clearly separated the North American native plants from those of European origin. The mean Cx value (the amount of DNA in one chromosome set) for source European native populations was 0.490 ± 0.007 (mean ± SD), for North American invasive 0.506 ± 0.020, and for North American native 0.543 ± 0.021. Relative to native populations, the European populations that successfully invaded North America had a smaller genome that was associated with plant traits favoring invasiveness (long rhizomes, early emerging abundant shoots, resistance to aphid attack, and low C:N ratio). The knowledge that invasive populations within species can be identified based on genome size can be applied to screen potentially invasive populations of Phragmites in other parts of the world where they could grow in mixed stands with native plants, as well as to other plant species with intraspecific variation in invasion potential. Moreover, as small genomes are better equipped to respond to extreme environmental conditions such as drought, the mechanism reported here may represent an emerging driver for future invasions and range expansions.


Assuntos
Afídeos , Poaceae/genética , Animais , Espécies Introduzidas , América do Norte , Fenótipo , Plantas
13.
Front Plant Sci ; 8: 1833, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250081

RESUMO

Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant responses to global change. Here we review the ecology and ecophysiology of prominent P. australis lineages and their responses to multiple forms of global change. Key findings of our review are that: (1) P. australis lineages are well-adapted to regions of their phylogeographic origin and therefore respond differently to changes in climatic conditions such as temperature or atmospheric CO2; (2) each lineage consists of populations that may occur in geographically different habitats and contain multiple genotypes; (3) the phenotypic plasticity of functional and fitness-related traits of a genotype determine the responses to global change factors; (4) genotypes with high plasticity to environmental drivers may acclimate or even vastly expand their ranges, genotypes of medium plasticity must acclimate or experience range-shifts, and those with low plasticity may face local extinction; (5) responses to ancillary types of global change, like shifting levels of soil salinity, flooding, and drought, are not consistent within lineages and depend on adaptation of individual genotypes. These patterns suggest that the diverse lineages of P. australis will undergo intense selective pressure in the face of global change such that the distributions and interactions of co-occurring lineages, as well as those of genotypes within-lineages, are very likely to be altered. We propose that the strong latitudinal clines within and between P. australis lineages can be a useful tool for predicting plant responses to climate change in general and present a conceptual framework for using P. australis lineages to predict plant responses to global change and its consequences.

14.
Sci Rep ; 7(1): 16569, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29185467

RESUMO

Ceratophyllum demersum (common hornwort) is presently considered the worst invasive submerged aquatic macrophyte in New Zealand. We explored the global phylogeographic pattern of the species, based on chloroplast and nuclear DNA, in order to identify the origin of the invasive populations in New Zealand and to clarify if there were multiple introductions. The phylogeographic study identified geographically differentiated gene pools in North America, tropical Asia, Australia, and South Africa, likely native to these regions, and a recent dispersal event of a Eurasian-related haplotype to North America, New Zealand, Australia, and South Africa. At least two different invasive genotypes of this Eurasian-related haplotype have been found in New Zealand. One genotype is closely related to genotypes in Australia and South Africa, while we could not trace the closest relatives of the other genotype within our C. demersum sample set. Contrasting spectra of genetic distances in New Zealand and in a region within the native range (Denmark), suggest that the invasive population was founded by vegetative reproduction, seen as low genetic distances among genotypes. We also discovered the introduction of the same Eurasian-related haplotype in Australia and South Africa and that a cryptic invasion may be occurring in these continents.


Assuntos
Haplótipos/genética , Austrália , Variação Genética/genética , Genótipo , Espécies Introduzidas , Nova Zelândia , Filogenia , Filogeografia
15.
Ecol Evol ; 4(21): 4161-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25505541

RESUMO

It is important to investigate the molecular causes of the variation in ecologically important traits to fully understand phenotypic responses to climate change. In the Mississippi River Delta, two distinct, sympatric invasive lineages of common reed (Phragmites australis) are known to differ in several ecophysiological characteristics and are expected to become more salt resistant due to increasing atmospheric CO2 and temperature. We investigated whether different patterns of gene expression can explain their ecophysiological differences and increased vigor under future climatic conditions. We compared the transcript abundance of photosynthetic genes of the Calvin cycle (Rubisco small subunit, RbcS; Phosphoglycerate kinase, PGK; Phosphoribulokinase, PRK), genes related with salt transport (Na(+)/H(+) antiporter, PhaNHA) and oxidative stress response genes (Manganese Superoxide dismutase, MnSOD; Glutathione peroxidase, GPX), and the total aboveground biomass production between two genotypes representing the two lineages. The two genotypes (Delta-type, Mediterranean lineage, and EU-type, Eurasian lineage) were grown under an ambient and a future climate scenario with simultaneously elevated CO2 and temperature, and under two different soil salinities (0‰ or 20‰). We found neither differences in the aboveground biomass production nor the transcript abundances of the two genotypes, but soil salinity significantly affected all the investigated parameters, often interacting with the climatic conditions. At 20‰ salinity, most genes were higher expressed in the future than in the ambient climatic conditions. Higher transcription of the genes suggests higher abundance of the protein they code for, and consequently increased photosynthate production, improved stress responses, and salt exclusion. Therefore, the higher expression of these genes most likely contributed to the significantly ameliorated salinity impact on the aboveground biomass production of both P. australis genotypes under elevated temperature and CO2. Although transcript abundances did not explain differences between the lineages, they correlated with the increased vigor of both lineages under anticipated future climatic conditions.

16.
J Environ Manage ; 134: 56-62, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24463849

RESUMO

Reed (Phragmites australis) is widespread in aquatic habitats in Europe where it plays an important ecological role, especially as stabilizer of lake and river shores and as filter against pollutants. Reed is also abundant in ecotones towards terrestrial habitats, especially fen meadows, where its expansion can out-compete rare slowly-growing fen species. Therefore, defining appropriate guidelines for managing reed in wetlands has to consider differences in the ecological roles that reed plays in different wetland habitats. In a small pre-alpine lake in N Italy, we mowed reed stands in three plant communities located along a transect from the lake shore to the periphery. In each community, three areas were subjected to reed mowing in late winter, as traditionally done in the past. Three additional areas were subjected to mowing in winter and summer, while three areas served as un-treated controls. Summer mowing was carried out in August, when the nesting period of birds was concluded. Mowing in winter did not affect reed aboveground biomass (RAB) in any community but enhanced the efficiency of removing nutrients by reducing litter accumulation in the soil. Mowing in winter and summer only slightly decreased RAB in the riparian community, not at all in the intermediate community but significantly diminished RAB in fen meadows. Phosphorus deficiency and/or reduced competition with other species probably accounted for RAB reduction in fen meadows. In conclusion, winter mowing can be overall recommended for preventing eutrophication of littoral habitats while summer mowing is advisable for preventing reed expansion in fen meadows. However, the timing of summer mowing has to be defined considering all requirements needed for optimal management of each individual site.


Assuntos
Conservação dos Recursos Naturais/métodos , Poaceae , Ecossistema , Eutrofização , Itália , Estações do Ano , Áreas Alagadas
17.
Glob Chang Biol ; 20(2): 531-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23913622

RESUMO

The prospective rise in atmospheric CO2 and temperature may change the distribution and invasive potential of a species; and intraspecific invasive lineages may respond differently to climate change. In this study, we simulated a future climate scenario with simultaneously elevated atmospheric CO2 and temperature, and investigated its interaction with soil salinity, to assess the effects of global change on the ecophysiology of two competing haplotypes of the wetland grass Phragmites australis, that are invasive in the coastal marshes of North America. The two haplotypes with the phenotypes 'EU-type' (Eurasian haplotype) and 'Delta-type' (Mediterranean haplotype), were grown at 0‰ and 20‰ soil salinity, and at ambient or elevated climatic conditions (700 ppm CO2, +5 °C) in a phytotron system. The aboveground growth of both phenotypes was highest at the elevated climatic conditions. Growth at 20‰ salinity resulted in declined aboveground growth, lower transpiration rates (E), stomata conductance (gs), specific leaf area, photosynthetic pigment concentrations, and a reduced photosynthetic performance. The negative effects of salinity were, however, significantly less severe at elevated CO2 and temperature than at the ambient climatic conditions. The Delta-type P. australis had higher shoot elongation rates than the EU-type P. australis, particularly at high salinity. The Delta-type also had higher maximum light-saturated rates of photosynthesis (Asat), maximum carboxylation rates of Rubisco (Vcmax), maximum electron transport rates (Jmax), triose phosphate utilization rates (Tp), stomata conductance (gs), as well as higher Rubisco carboxylation-limited, RuBP regeneration-limited and Tp-regeneration limited CO2 assimilation rates than the EU-type under all growth conditions. Our results suggest that the EU-type will not become dominant over the Delta-type, since the Delta-type has superior ecophysiological traits. However, the projected rise in atmospheric CO2 and temperature will alleviate the effects of salinity on both phenotypes and facilitate their expansion into more saline areas.


Assuntos
Dióxido de Carbono/metabolismo , Espécies Introduzidas , Fotossíntese , Poaceae/fisiologia , Solo/química , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Salinidade , Sudeste dos Estados Unidos , Temperatura
18.
Ecol Evol ; 4(24): 4567-77, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25558352

RESUMO

Compared with non-invasive species, invasive plant species may benefit from certain advantageous traits, for example, higher photosynthesis capacity and resource/energy-use efficiency. These traits can be preadapted prior to introduction, but can also be acquired through evolution following introduction to the new range. Disentangling the origins of these advantageous traits is a fundamental and emerging question in invasion ecology. We conducted a multiple comparative experiment under identical environmental condition with the invasive haplotype M lineage of the wetland grass Phragmites australis and compared the ecophysiological traits of this invasive haplotype M in North America with those of the European ancestor and the conspecific North American native haplotype E lineage, P. australis ssp. americanus. The invasive haplotype M differed significantly from the native North American conspecific haplotype E in several ecophysiological and morphological traits, and the European haplotype M had a more efficient photosynthetic apparatus than the native North American P. australis ssp. americanus. Within the haplotype M lineage, the introduced North American P. australis exhibited different biomass allocation patterns and resource/energy-use strategies compared to its European ancestor group. A discriminant analysis of principal components separated the haplotype M and the haplotype E lineages completely along the first canonical axis, highly related to photosynthetic gas-exchange parameters, photosynthetic energy-use efficiency and payback time. The second canonical axis, highly related to photosynthetic nitrogen use efficiency and construction costs, significantly separated the introduced P. australis in North America from its European ancestor. Synthesis. We conclude that the European P. australis lineage was preadapted to be invasive prior to its introduction, and that the invasion in North America is further stimulated by rapid post-introduction evolution in several advantageous traits. The multicomparison approach used in this study could be an effective approach for distinguishing preadaptation and post-introduction evolution of invasive species. Further research is needed to link the observed changes in invasive traits to the genetic variation and the interaction with the environment.

19.
Glob Chang Biol ; 19(11): 3406-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23765641

RESUMO

After its introduction into North America, Euro-Asian Phragmites australis became an aggressive invasive wetland grass along the Atlantic coast of North America. Its distribution range has since expanded to the middle, south and southwest of North America, where invasive P. australis has replaced millions of hectares of native plants in inland and tidal wetlands. Another P. australis invasion from the Mediterranean region is simultaneously occurring in the Gulf region of the United States and some countries in South America. Here, we analysed the occurrence records of the two Old World invasive lineages of P. australis (Haplotype M and Med) in both their native and introduced ranges using environmental niche models (ENMs) to assess (i) whether a niche shift accompanied the invasions in the New World; (ii) the role of biologically relevant climatic variables and human influence in the process of invasion; and (iii) the current potential distribution of these two lineages. We detected local niche shifts along the East Coast of North America and the Gulf Coast of the United States for Haplotype M and around the Mississippi Delta and Florida of the United States for Med. The new niche of the introduced Haplotype M accounts for temperature fluctuations and increased precipitation. The introduced Med lineage has enlarged its original subtropical niche to the tropics-subtropics, invading regions with a high annual mean temperature (> ca. 10 °C) and high precipitation in the driest period. Human influence is an important factor for both niches. We suggest that an increase in precipitation in the 20th century, global warming and human-made habitats have shaped the invasive niches of the two lineages in the New World. However, as the invasions are ongoing and human and natural disturbances occur concomitantly, the future distribution ranges of the two lineages may diverge from the potential distribution ranges detected in this study.


Assuntos
Ecossistema , Espécies Introduzidas , Poaceae , DNA de Cloroplastos/genética , Haplótipos , Atividades Humanas , Humanos , Modelos Teóricos , Poaceae/genética , Chuva , Análise de Sequência de DNA , Temperatura , Estados Unidos
20.
AoB Plants ; 2012: pls020, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22962631

RESUMO

BACKGROUND AND AIMS: Two Phragmites australis taxa are recognized in Europe: P. australis ssp. altissimus, also known as Phragmites isiaca, in the Mediterranean region and P. australis in the temperate region. Another taxonomic group in the Mediterranean is Phragmites frutescens. European genotypes are diverse genetically, cytologically and morphologically, and are related to African, Asiatic and American genotypes. We investigated chloroplast DNA (cpDNA) diversity in Europe and defined the current borders of the European gene pool. METHODOLOGY: We analysed chloroplast variation with parsimony and genetic distance methods, and compared it with that of nuclear amplified fragment length polymorphism and microsatellites. We also investigated the phenological pattern of 188 genotypes collected worldwide in a common garden in Denmark. We assumed that non-flowering genotypes could indicate climatic, geographic and/or reproductive barriers to dispersal and would have been recorded in the genetic pattern as groups genetically isolated from, or within, the European pool. PRINCIPAL RESULTS: The European P. australis gene pool extends from North America to the Far East and South Africa. However, African and North American genotypes are differentiating from the European genotypes. Mediterranean P. australis is genetically different from temperate P. australis and shares several similarities with Phragmites mauritianus in Africa and Phragmites karka in Asia. Phragmites frutescens shares the cpDNA sequences with both these tropical species. Two DNA bands can distinguish Mediterranean P. australis from P. frutescens and P. mauritianus and from temperate P. australis, and reveal possible hybrids among these species in the Mediterranean region. Phenological data confirmed possible gene flow within the temperate region of Europe, whereas the Mediterranean genotypes did not set inflorescences in Denmark, suggesting reproductive barriers between temperate and Mediterranean P. australis. CONCLUSIONS: European P. australis appears as one of four main Phragmites groups known in the world. Further research is needed to understand the implications of long-distance dispersal at the population level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA