Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839915

RESUMO

Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while  promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.

2.
Sci Transl Med ; 15(710): eadi0252, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37611083

RESUMO

Improvements in COVID-19 treatments, especially for the critically ill, require deeper understanding of the mechanisms driving disease pathology. The complement system is not only a crucial component of innate host defense but can also contribute to tissue injury. Although all complement pathways have been implicated in COVID-19 pathogenesis, the upstream drivers and downstream effects on tissue injury remain poorly defined. We demonstrate that complement activation is primarily mediated by the alternative pathway, and we provide a comprehensive atlas of the complement alterations around the time of respiratory deterioration. Proteomic and single-cell sequencing mapping across cell types and tissues reveals a division of labor between lung epithelial, stromal, and myeloid cells in complement production, in addition to liver-derived factors. We identify IL-6 and STAT1/3 signaling as an upstream driver of complement responses, linking complement dysregulation to approved COVID-19 therapies. Furthermore, an exploratory proteomic study indicates that inhibition of complement C5 decreases epithelial damage and markers of disease severity. Collectively, these results support complement dysregulation as a key druggable feature of COVID-19.


Assuntos
COVID-19 , Interleucina-6 , Humanos , Proteômica , Proteínas do Sistema Complemento , Ativação do Complemento
3.
Eur J Immunol ; 53(11): e2250106, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36781404

RESUMO

Over the last years, technological advances in the field of asthma have led to the identification of two disease endotypes, namely, type 2-high and type 2-low asthma, characterized by different pathophysiologic mechanisms at a cellular and molecular level. Although specific immune cells are important contributors to each of the recognized asthma endotype, the lung epithelium is now regarded as a crucial player able to orchestrate responses to inhaled environmental triggers such as allergens and microbes. The impact of the epithelium goes beyond its physical barrier. It is nowadays considered as a part of the innate immune system that can actively respond to insults. Activated epithelial cells, by producing a specific set of cytokines, trigger innate and adaptive immune cells to cause pathology. Here, we review how the epithelium contributes to the development of Th2 sensitization to allergens and asthma with a "type 2-high" signature, in both murine models and human studies of this asthma endotype. We also discuss epithelial responses to respiratory viruses, such as rhinovirus, respiratory syncytial virus, and SARS-CoV-2, and how these triggers influence not only asthma development but also asthma exacerbation. Finally, we also summarize the results of promising clinical trials using biologicals targeting epithelial-derived cytokines in asthmatic patients.


Assuntos
Asma , Humanos , Animais , Camundongos , Pulmão , Células Epiteliais , Citocinas , Epitélio , Alérgenos
4.
Respir Res ; 23(1): 202, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945604

RESUMO

BACKGROUND: The efficacy and safety of complement inhibition in COVID-19 patients is unclear. METHODS: A multicenter randomized controlled, open-label trial. Hospitalized COVID-19 patients with signs of systemic inflammation and hypoxemia (PaO2/FiO2 below 350 mmHg) were randomized (2:1 ratio) to receive standard of care with or without the C5 inhibitor zilucoplan daily for 14 days, under antibiotic prophylaxis. The primary outcome was improvement in oxygenation at day 6 and 15. RESULTS: 81 patients were randomly assigned to zilucoplan (n = 55) or the control group (n = 26). 78 patients were included in the safety and primary analysis. Most were men (87%) and the median age was 63 years. The mean improvement in PaO2/FiO2 from baseline to day 6 was 56.4 mmHg in the zilucoplan group and 20.6 mmHg in the control group (mean difference + 35.8; 95% confidence interval (CI) - 9.4 to 80.9; p = 0.12), an effect also observed at day 15. Day 28 mortality was 9% in the zilucoplan and 21% in the control group (odds ratio 0.4; 95% CI 0.1 to 1.5). At long-term follow up, the distance walked in a 6-min test was 539.7 m in zilucoplan and 490.6 m in the control group (p = 0.18). Zilucoplan lowered serum C5b-9 (p < 0.001) and interleukin-8 (p = 0.03) concentration compared with control. No relevant safety differences between the zilucoplan and control group were identified. CONCLUSION: Administration of zilucoplan to COVID-19 patients in this proof-of-concept randomized trial was well tolerated under antibiotic prophylaxis. While not reaching statistical significance, indicators of respiratory function (PaO2/FiO2) and clinical outcome (mortality and 6-min walk test) suggest that C5 inhibition might be beneficial, although this requires further research in larger randomized studies.


Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , Complemento C5 , Inativadores do Complemento/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos Cíclicos , SARS-CoV-2 , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA